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What is a 'search' ?
● Most physicists immediately understand the

notion of “performing a search for a new signal”
● In statistical language, a “search” can be

defined as the combination of two base
statistical concepts:

Hypothesis Test + Interval Estimation(limit setting)

● That is, one performs 2 (separate) steps:
– Test the data for presence of a signal

1) If significant deviation from “null hypothesis” 
– Claim discovery (and possibly measure properties → Estimation)

2) Otherwise SET LIMITS on new signal parameters
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Optimization of a 'search' 
● Obviously, when performing a search, you will want to

have the best possible sensitivity

● Part of this is getting the best possible detectors, and
collecting largest samples of quality data

● Another part is using the best possible analysis 
procedure → 'optimal search procedure'

This is the main topic of the present lecture

● The two-pronged nature of “searching” easily leads to
a dilemma “optimize for discovery, or for limit setting ?”

● We will discuss this problem in some detail, and how it
can be solved in a general way. 

● I will start by reminding you of the base concepts of
Hypothesis Test and Interval Estimation 
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Hypothesis Testing
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What is Hypothesis Testing
● I have several possible alternative hypotheses Hi for the true state

of Nature. Each implies a different pdf for data x∈X: pi(x;µ,ν...) 

● I observe data x. Now I want to infer which of the Hi is true. 
– pi is 'simple' if NO parameters, otherwise 'composite'

– the pi do not need to share the same parameters, but it is also

possible that pi(x;µ)=p(x;µ,νi). Even then, testing≠estimation

● On widely general grounds, a test T is any function T(x) : X → {Hi}

● Usually one of the Hi is 'default': the 'null hypothesis' H0

– Testing is asymmetrical: H0 is the accepted conclusion in the

lack of evidence to the contrary. Reflects the base scientific
concept of “falsifying” a theory.

– Natural approach for a search for deviations from SM (=H0)
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Definitions:
● If T(x) ≠ H0 the result is 'significant' otherwise 'not significant'

● Def: critical region {x:T(x) ≠ H0} acceptance region: {x:T(x) = H0}
– α :    probability  of 'Type I error'  : supν p0(T(x)≠H0;ν)

– β(i): probability of 'Type II error' : pi(T(x)=H0)

● α is also called size of the test, and is FIXED before the test

– Desirable small, often 0.05 or 0.01. Physicists often use
Gaussian tail probabilities for 3σ or 5σ

● β(i) is calculated after fixing α, and it is desirable small. 
● Def: power of test powT(i) = 1 – β(i) → you want it to be maximum

● But: power an unambiguous criterion for choosing the best test only
in case of just 2 simple hypotheses.

What is Hypothesis Testing
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Example sketch in 1-D

1 - β(µ )

µ

H0 Hm

p(x)

x

criticalaccept.

αβ

● But keep in mind most real cases are N-D

– There are differences that may confuse you

α

0

● Consider a case where Hi are distinguished by the
value of a single real parameter µ
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Example sketch in 1-D

● Let's now discuss how to OPTIMIZE this 

1 - β(µ )

µ

H0 Hm

p(x)

x

criticalaccept.

αβ
α

0
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What to ask from a H-Test
● UNBIASEDNESS: powT(µ) > α ∀µ  (very desirable)

● CONSISTENCY:  limN→∞ powT(µ)= 1 ∀µ  (desirable) 

– NB: Consistency → asymptotic Unbiasedness.

 
● Maximum power (MP): powT(µ) > powT' (µ) ∀T' (at fixed µ)

● Local Maximum Power (LMP): powT(µ)>powT'(µ) ∀T' if µ→µ0

● Uniform Maximum Power (UMP): powT(µ) > powT' (µ) ∀T'∀µ

– If a UMP test exists, it is obviously the method of choice.
● “Simplicity”: can often have T(x) = T(t(x)); t(x) is called test statistic. It

is convenient to use tests based on a statistic with simple properties]
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The Neyman-Pearson Lemma
● If H0 and H1 are simple hypotheses, the MP test exists: it

is based on the Likelihood-Ratio statistic: 

T(x) = H1    ∀x: p1(x)/p0(x) >cα

where cα is determined by the chosen size of the test:

∫
T(x)=H1

p0(x)dx = α 

● This simple result is of great importance

● You can't beat N-P: any possible sophisticated MVA
analysis you can do, will only be successful in as much as
it approximates the N-P statistics
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Testing of nested families of pdf
● Suppose there is a common pdf underlying our hypotheses

p(x;µ,ν), and that our test can be put in the form H0: ν=ν0 against
Hν: ν≠ν0  

then a helpful test statistic is provided by the following, slightly
generalized form of Wilk's theorem, stating that under the usual
regularity conditions, the statistics:

λ(x,ν) = 2 log [(supµ,ν p(x;µ,ν))/p(x;µ,ν0)]

has asymptotically the chisquare distribution with dim(ν) degrees
of freedom. In addition, E[λ] is larger for ν≠ν0 than for ν=ν0 (the
distribution is actually known)

● This form of Likelihood-ratio test is widely used for its simplicity
– it is important to remember that the result is only
asymptotically valid, and it is NOT necessarily UMP !
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Special case: exponential family
● Theorem: consider a pdf of a 1D parameter µ, having

the form:

p(x;µ) = Πi F(xi)G(µ)exp[A(xi)B(µ)] 

where B(µ) is strictly monotonic.

Then a UMP test exists for H0: µ=µ0 against Hµ: µ>µ0,
based on:

∑i A(xi) > cα  
● NB:  no 2-sided (µ≠µ0) UMP test exists
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Pitfalls of some common recipes
Consider a classical “counting experiment”:

– H0: Pois(B,n)    ;   Hµ: Pois(B+S,n). 

– Suppose expected 'Background' and 'Signal' depend on some
parameters t under the experimenter's control: B=B(t) , S=S(t,µ)

● How do you choose the optimal t for conducting the experiment ? 
Let's examine some popular methods. 

1) Maximize the “significance” S(t)/√B(t)

1. It is NOT a significance !

– “significance” is a post-experiment quantity: (Obs – B)/√B(t)
– Might be argued to be ~average expected significance

2. You want high probability of discovery, NOT high average significance

3. Assumes Gaussian approximation → not good for low statistics 

4. Diverges for B→0 (B=0.0001 with S=0.01 considered 'good sensitivity')
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Pitfalls of some common recipes
Consider a classical “counting experiment”:

– H0: Pois(B,n)    ;   Hµ: Pois(B+S,n). 

– Suppose expected 'Background' and 'Signal' depend on some
parameters t under the experimenter's control: B=B(t) , S=S(t,µ)

● How do you choose the optimal t for conducting the experiment ? 
Let's examine some popular methods. 

2) Maximize the “significance” S(t)/√(S(t)+B(t))

1. It is NOT a significance ! Not even 'average expected significance'

2. It is actually the inverse of expected relative uncertainty on S

3. This is good if you want to measure a BR with precision – not what you
are looking for in a search !

4. Does not diverge, but still assumes Gaussian approximation



 

 Giovanni Punzi – Invisibles17 School 15

Pitfalls of some common recipes
Consider a classical “counting experiment”:

– H0: Pois(B,n)    ;   Hµ: Pois(B+S,n). 

– Suppose expected 'Background' and 'Signal' depend on some
parameters t under the experimenter's control: B=B(t) , S=S(t,µ)

● How do you choose the optimal t for conducting the experiment ? 
Let's examine some popular methods. 

3) Maximize “signal-to-noise” S(t)/B(t)

Considered intuitive by some, but NO REASON for being a good idea 
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Summary of H-testing
● Beware of those “intuitive” formulas: they are

almost never what you need. 
Make use of the concept of power instead.

● Use UMP when it exists, LMP when meaningful
● Optimal choice is undefined in most cases; 

that is, it requires more knowledge about the
searched signals that you typically have

● Anyhow: optimizing H-test does not tell you
anything about the tightness of the limits you
will be able to set on the phenomena being
searched → this will be our next topic 



 

 Giovanni Punzi – Invisibles17 School 17

Plan B:
Setting Limits
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“Interval Estimation”: what is it ?
● A more correct expression would actually be “region

estimation” or “set estimation” (to allow for multi-D)

● Sometimes also referred to as “limit setting” (another
expression biased towards 1-D problems only)

● A “region estimator” f(x) for a parameter µ ∈ A is any function of

the data f: X → ℘ (A) that may be considered a “useful
estimate” of the region where the true value of µ might belong.

● Defining what are “good properties” for region estimators is
more complicated with respect to point estimators 

● I will only deal with frequentist interval estimation in this lecture

– H-testing is frequentist (its Bayesian counterpart is more
involved)

– I am not aware of the existence of a unified optimization
method that makes use of Bayesian intervals
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Interval Estimation ≠ Point Estimation

● Suppose I have a point estimate e(x) = a ± σa 

 - isn't this an 'interval' already ? [a – σa , a+σa]

– The answer is NO !

● The quantity σa is a statement about the variability of the
statistic e(x) (= central value 'a') in repeated experiments.

● This gives no special meaning to the values (a – σa, a+σa)

● Remember also that σa=σa(µ) - depends on true value µ

– Usual (silent) convention is to quote σa=σa(a)

– Can be a trouble if σa(a) is very different from σa(a±σa)
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Interval Estimation ≠ Point Estimation

● Example: Poisson pdf:  p(n;µ)= e-µ µn/n!

– MLE estimate of µ = n (unbiased)

– Var(n) = µ
● If I measure n=1 →  estimate µ = 1 ± 1

– Does not mean that µ≤0 has a 33% probability...
●  If I measure n=0 →  estimate µ = 0 ± 0

– Hum ? ….
● This is a common problem with histogram error bars 

● AND it is not due to the pdf being “non-gaussian” !
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Reminder: Confidence Level

CL(f) ≡  inf
µ∈A   ∫x:µ∈f(x)

p(x;µ)  

● In words: any algorithm providing correct bounds (at
least) a fraction CL of the times, independently of the
actual value of µ - is said to have confidence level CL

● CL is a property of the algorithm, not of individual region

● Does NOT comply with the Likelihood Principle

● It is a statement about probability of f(x)∍ µ – not µ∈f(x)

● Still requires some criteria for choosing the region -
commonly from some ordering principle
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Coverage

CL(f) ≡  inf
µ∈A

C(µ)

C(µ) = ∫
x:µ∈f(x)

p(x;µ)  

● C(µ) is the coverage of the algorithm f at point µ. It
can be informative to plot coverage as function of µ.

● Where C(µ) > CL the algorithm is said to overcover
(undercovering is a failure to attain the required CL)

● Ideally, it would be optimal to have constant C(µ) = CL

● This may not be possible in practice – due to
discretization, for instance)

● One can also write:

where:
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Elementary example of what 'confidence' means

● Two types of bags: A, B
● A contains 90% white balls, 10% black
● B contains 10% white balls, 90% black

– Extract a ball, and classify A or B (make two piles:OA, OB)

– Probability of wrong assignment of B-classified bag

p(A|OB) = p(A,OB)/p(OB) = pA*f/(pA*f+(1-f)*(1-pA))

= f/(f+(1-f)/pA-(1-f)) =  f/(2f-1+(1-f)/pA)

– p(A|OB) spans the full [0,1] range

● But, p(any error) = 10% independent of pA !
– This is our confidence in the classification procedure
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Ordering Algorithms
● Ample freedom in choosing the CB asks for some criteria

● Typically, an “ordering function” o(x) is used, so that the
band is built by requiring:  ∫o(x)>c p(x;µ) ≥ CL

● A different method is used for “central” limits 

● Low/high (o(x)=±x), central, or P-ordering (o(x)=p(x;µ)),
have been the only methods in use for quite some time 

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

Low/High “Central”
x x

95% 95%2.5% 2.5%

P-ordering (shortest)
x

95%
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Optimization of Limit-setting ?

1. Minimize average expected upper limit on S
– problem: not invariant for transformation of observable

2.  Minimize median expected upper limit on S
– invariant; however, only esists for 1-D problems

Unfortunately, unlike H-testing no general concept of “power” exists

Consider again the classical “counting experiment”:
– H0: Pois(B,n)    ;   Hµ: Pois(B+S,n). 
– Suppose expected 'Background' and 'Signal' depend on some

parameters t under the experimenter's control: B=B(t) , S=S(t,µ)
● How do you choose the optimal t for conducting the experiment ,

when the desired objective is to obtain the strongest limits ? 
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● This important recommendation is rarely followed ! 

– NB: unfortunately formulated for 1-D problems only
● One should always check whether the results of the

experiment are particularly “unlikely” - in which case the
limits will be suspicious

Feldman-Cousins on “sensitivity”
Quoting from the paper: 

“Our suggestion [...] is that in cases in which the measurement is less than the
estimated background, the experiment reports both the upper limit and the
‘‘sensitivity’’ of the experiment, where the ‘‘sensitivity’’ is defined as the average
upper limit that would be obtained by an ensemble of experiments with the
expected background and no true signal. […] we suggest that the sensitivity
curve be displayed as well as the upper limit” 

ASIDE
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Putting everything together:
Combined Optimization
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Coordinating H-Test with Limits
● In principle, limit-setting may be done in a way totally unconnected with

the test of hypothesis. But there can be undesirable consequences.

→ Optimality requirement: the ordering algorithm, for each µ,
must first exclude the acceptance region for H0.

Hµ

critical

x

Accept H0

Accept Hµ 

Accept H0

Reject Hµ 

Reject H0

Accept Hµ 

Reject H0

Reject Hµ 

acceptance

Inefficient !

Lack of power in setting limits on µ

H0 Hm

p(x)

x

criticalacceptance

Limit
exclusion

Test significant
but H0 in C.R. !

Exclude H0 despite non-significant test
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Definition of “sensitivity region” for a search
 ArXiv:physics/0308063

● Differs from usual notion of sensitivity as a number: 
here we consider the range of hypotheses for which the
experiment will provide a “definite conclusion” 

● Def:  The sensitivity region for a search is defined as:

S = {µ: 1 - βα(µ) > CL}
● Theorem: the following two facts hold simultaneously:

1) If the true value of µ is inside S, the probability of  discovery
(excluding H0 @signif. α ) is at least CL

2) In case of non-significant result, the excluded region @CL
will contain S (independently of the true value of µ !)
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Definition of “sensitivity region”

exclusion region

sensitivity region

µ2

µ1

green covers blue
      (1- CL > β) 

● “Unified” view of sensitivity: independently of expectations on Hµ , you want
the sensitivity region to be as large as possible, 

● Does not contain elements of randomness (“absolute sensitivity”). If the
sensitivity region covers the whole parameter space of a theory, the
experiment is conclusive.

● No dependence on metric or priors (purely frequentist) – or expected signal.

● No dependence on the limits ordering function. Apart from the “optimality
requirement”, can use any method with frequentist coverage (including CLs). 

● Valid in any number of dimensions
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Application to 'counting experiment'
Sensitivity region takes the simple form: S(µ,t) > Smin(B(t))

It depends on both the chosen α and CL

 

Smin

B

(0.95, 0.95)

(“3σ”, 0.95)

(“5σ”, 0.90)

(α , CL)

sensitivity
region

B

Note small decreasing tracts – due to intrinsic discrete problem

Can take advantage of a smooth interpolation



 

 Giovanni Punzi – Invisibles17 School 38

Use in Optimization of a Search
● S depends on selection cuts t:  S(µ,t)=ε(t)*L*σ(µ) >Smin

         →  σ(µ) > Smin/(ε(t)*L)

● Want to be sensitive to the smallest possible x-section σ(µ)

→ For best sensitivity,  maximize the FOM: ε(t)/Smin

● Independent  from expected cross section for signal
● Does not diverge for small B 

1/√B

1/√(S+B)

1/Smin

B

Comparison with other FOMs
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Approximate formulas

2 4 6 8 10 12 14

0.05

0.1

0.15

0.2

0.25

Simplest: valid for b~a

(a,b) = # of sigmas for (α, β) 

Tail-improved Gaussian approx.
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A real-life example 
Optimizing a search for rare decays

S/√B S/(a/2+√B)

The new formula eliminates fake solution with tight cuts
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Summary

● Maximization of this FOM turned out very useful in searches
– it has been used in >100 papers (and counting) by various
experiments

● Independent of absolute signal size, and of absolute
efficiency

● Simple, and easy to evaluate

● It is the result of applying the general criteria of largest
sensitivity region (1-β > CL) to a “counting experiment”

● For full details, see ArXiv:physics/0308063 - you can optimize
the method for your specific application if you wish to.

https://arxiv.org/abs/physics/0308063

