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Exact results in Quantum Field Theories

Going beyond perturbation theory is an important challenge in

Quantum Field Theory and String Theory.

N=2 supersymmetric gauge theories in four dimensions are useful to study:

• exact non-perturbative effects (instantons)

• strong-weak coupling dualities

systematic study of the above lead to discover rich algebraic and integrable

structures, which had deep impact also in mathematics.

• confinement through breaking to N=1 
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Exact results in Quantum Field Theories

In the weak coupling phase the supersymmetric path integral can be
reduced via equivariant localization to combinatorial objects - Nekrasov

function, matrix models - paving the way to the link with rich algebraic

structures as CFT - type algebrae (Virasoro, W - algebrae, Kac-Moody)

and quantum integrable systems. 

In the strong coupling phase the embedding in superstring theories

provides a crucial tool to explore S-duality and to calculate protected

gauge theory quantities - e.g. holomorphic anomaly equations, 

topological recursion.
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Exact results in Quantum Field Theories

In this talk we will show how to compute a class of gauge theory amplitudes

in strongly coupled phases by reducing them to the solutions of non-linear

ODEs . These are associated to a set of isomonodromy problems and display

a deep link with the non-perturbative completion of topological string proposed

by Grassi, Hatsuda and Marino.
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Today’s talk:

N=2 gauge theories isomonodromy problems

quantum statistical systems and non-perturbative string

new tools to explore strongly coupled phases/
sectors of gauge theory 

gauge theory partition functions and BPS correlators !
as        - functions of isomonodromy problems
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based on:

G. Bonelli, A. Grassi, A.T. arXiv:1603.01174, 1704.01517 & to appear

G. Bonelli, O. Lisovyy, K. Maruyoshi, A. Sciarappa, A.T. 1612.06235
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N=2 supersymmetric gauge theories in 4d
class S: M-theory compactification from 6d naturally hints a 
              relation with 2d theory

description in terms of Hitchin’s algebraic integrable system

Renormalization group equations of SU(2) asymptotically free gauge 
theories are systematically described by Painleve’ equations
Spectral determinant presentation of Painleve’ tau-function hints 
to a new relation between gauge theory and quantum statistical!
systems via geometric engineering limit of non-perturbative string

Generalisation to higher rank: new class of Matrix models 
describing the magnetic phase of pure SU(N) Super Yang-Mills 
theories.
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Seiberg-Witten curve from M-theory

Consider M-theory on                   holomorphic symplectic
two-fold

r  M5 branes on                       in the Coulomb branch      

decoupling gravity           local geometry   

holomorphic k-differential 

[Klemm-Lerche-Mayr-Vafa-Warner, 
 Witten, Gaiotto]
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Hitchin’s equations

         compactification gives rise to U(r) Super Yang-Mills theory in 5d 

  on                  .  BPS vacua invariant under Super-Poincare’ of 

  satisfy

in class S have the important property that they enjoy a close relationship with Hitchin

systems. This relation, which is absolutely central to this paper, is revealed when one

further compactifies to three dimensions on a circle. At low energies the three-dimensional

e↵ective theory is a d = 3,N = 4 sigma model with target space M. This target space may

be identified, as a Riemannian manifold, with the moduli space of solutions to a Hitchin

system. To justify this, the essential observation is that instead of compactifying on C

and then on S1, we can — by a QFT version of the “Fubini theorem” — construct the

same e↵ective theory in three dimensions by first compactifying on S1 and then on C. The

first compactification on S1 leads to a five-dimensional supersymmetric Yang-Mills theory.

The subsequent compactification of the (twisted) d = 5 super-Yang-Mills theory on C then

leads to BPS equations which are well known to be the Hitchin equations. In particular, if

we begin with K M5-branes (i.e. the superconformal u(K) (2, 0) theory in six dimensions)

then the Hitchin equations are equations (3.32)-(3.34) below:

F +R2[', '̄] = 0, (1.1)

@
z̄

'+ [A
z̄

,'] = 0, (1.2)

@
z

'̄+ [A
z

, '̄] = 0, (1.3)

where R is the radius of the circle, F is the fieldstrength of a u(K) gauge field A on C and

' is the (1, 0) part of a 1-form valued in the adjoint. z is a local holomorphic coordinate

on C.

The description of the Hitchin system is incomplete without specifying boundary condi-

tions on (A,') at the punctures of C. At these punctures the fields (A,') have singularities.

Physically these singularities encode the somewhat mysterious “defect operators” of the

six-dimensional superconformal theory (and in practice the defect operators are defined by

the specified singularities of (A,')). The simplest operators to consider – and the ones

upon which we focus – arise from intersections, at the punctures of C, of the multiple u(K)

M5-brane theory with “transverse” singly-wrapped M5-branes. By transverse we mean

the following. In general the curve C is embedded in some hyperkahler manifold Q as a

holomorphic curve. The gravitational decoupling limit allows us to replace Q by a neigh-

borhood of the zero-section of T ⇤C. The transverse fivebranes fill the four-dimensional

spacetime R1,3 of the N = 2 theory and run along fibers of the projection T ⇤C ! C. In

Section 3 we show how to translate this physical picture into conditions on the singularities

of (A,'). The singularities are described in detail in Section 3.2.4; see (3.74), (3.75), and

(3.76), for the case of regular singularities, and Section 3.2.6, equation (3.115), (3.116), as

well as Section 9.3, for the case of irregular singularities.

The Hitchin system plays a central role throughout the paper and Section 4 of the paper

summarizes the basic facts we need about Hitchin systems. The mathematically-oriented

reader can skip Section 3 and proceed with the brief summary in Section 4, although the

rules for finding BPS states might then appear somewhat unmotivated.

A particularly important set of examples of theories in the class S are provided by

Witten’s geometric construction of N = 2 theories using arrays of NS5- and D4-branes

[2]. These are often summarized by figures such as Figure 5. Much of Section 3 is merely
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  these are equivalent to the flatness of the                     connection 
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Seiberg-Witten curve and Hitchin’s system

        is HyperKahler               twistor parameter 
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for                base space           described by 

SW curve is the spectral curve
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Seiberg-Witten curve and Hitchin’s system

7

MR��S� phase space (dim=2r) 

 base (dim = r)

(HyperKahler)

(Special Kahler)

vacua = integrable system

Lagrangian fibration

MR� � U

Hitchin’s complex algebraic integrable system:

Coulomb branch of 4d gauge theory
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Polar structure of the k-differentials

 M5 brane on simple pole for the k-diff.

matter sector                        residue: mass

Collision of poles with suitable rescalings of the residues

changes the matter sector
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 for                 gauge theory

 quadratic differentials on a Riemann sphere with at most

four simple poles: 

collision of simple poles
hol. decoupl. of matter

Argyres-Douglas sect.

superconformal gauge theory
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VI V III1 Vdeg III2 III3 IV IIJM IIFN I

Nf = 4 Nf = 3 Nf = 2 (1st) Nf = 2 (2nd) Nf = 1 Nf = 0 H2 H1 (1st) H1 (2nd) H0

N = 2
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holomorphic decoupling: Lagrangian theories
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Argyres-Douglas sectors:

VI V III1 Vdeg III2 III3 IV IIJM IIFN I
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PIII1

$$

// PIII2

$$

// PIII3

PV I // PV //

;;

##

PVdeg

%%

::

PIIJM // PI

PIV

99

// PIIFN

99

1 2 3
�

dq

dt
=

@

@p
HJ(q, p; t),

dp

dt
= � @

@q
HJ(q, p; t).

J = I, II, IIIi, IV,V,VI (i = 1, 2, 3)

�J(t)

�J(t) = tHJ(t) (J = IIIi,V), �J(t) = HJ(t) (J = I, II, IV).

�

⌧ ⌧J(t) �J(t)

�J(t) = t
d

dt
ln ⌧J(t) (J = IIIi), �J(t) =

d

dt
ln ⌧J(t) (J = I, II, IV).

⌧

⌧

d

dz
 (z) = A(z) (z)

Painleve’ coalescence diagram

Painleve’ property: ODE with only movable poles

Classification problem for ODEs

2 Seiberg-Witten curves and isomonodromic deformations

In this Section we establish a correspondence between Seiberg-Witten (SW) geometry of
four-dimensional N = 2 class S theories constructed from two M5-branes and the system of
linear Ordinary Differential Equations (ODE) associated to Painlevé equations, along the
following lines:

• we recall the linear ODE problems associated to the Painlevé equations, the Lax pair
in suitable coordinates and the corresponding Hamiltonian functions;

• we recall basic facts about Hitchin systems and their link to 4d N = 2 gauge theories;

• we identify Hitchin’s connection with the connection of the linear system and conse-
quently the SW quadratic differential with the generator of Painlevé Hamiltonians;

• we recall the relation between Painlevé τ -functions, conformal blocks and “dual” in-
stanton partition functions.

2.1 Painlevé equations and isomonodromic deformations

At the turn of the twentieth century there have been repeated attempts to describe ordinary
differential equations in terms of singularities of their solutions in the complex domain.
For nonlinear ODEs this task is quite difficult to tackle, as in general the positions of
singularities and even their type depend on the initial conditions: the singular points become
movable. A more refined version of the problem is to classify the equations with predictable
branching by allowing only movable poles, movable single-valued essential singularities and
fixed singular points of any type. The latter requirement is nowadays known as the Painlevé

property.
The classification of algebraic 1st order ODEs of Painlevé type has been achieved by

L. Fuchs in 1884, who showed that such equations are either reducible to linear ones or can
be solved in terms of elliptic functions. The treatment of the problem is simplified by the
fact that movable singular points of the 1st order equations can only be poles or algebraic
branch points. When the order of an ODE is 2 or higher, one cannot a priori exclude more
complicated movable singularities, such as essential singular points or natural boundaries,
and the problem becomes much more involved. Nevertheless in 1900-1910 P. Painlevé and B.
Gambier undertook an attempt of classifying the degree 1 2nd order ODEs free of movable
branch points. Such equations have the form

q̈ = F (q, q̇; t), (2.1)

where dots denote derivatives with respect to t and F is rational in q, q̇ and locally analytic
in t. The outcome of Painlevé and Gambier studies was a list of 50 equivalence classes
of ODEs, most of which can be reduced to linear equations or integrated by quadratures.
There remain six irreducible exceptional ODEs which became known under the name of
Painlevé equations PI–PVI1.

1See for example [18] for an introduction to the subject.
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Painleve’ and isomonodromy deformations
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                  ,         affine coordinate on punctured sphere

isomonodromy: family                  of flat                conn.
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Compatibility condition                                :
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Seiberg-Witten curve ! Upon ident. 

where z is the affine coordinate on C0,n (an n-punctured CP1), A(z) 2 sl(2,C) is a 2 ⇥ 2

traceless complex matrix of meromorphic functions and  (z) 2 GL(2,C) is an invertible
complex 2⇥ 2 matrix. The matrix A(z) is of the general form

A(z) =

nX

⌫=1

A(⌫)
(z)

(z � z⌫)r⌫+1
, A(⌫)

(z) =

r⌫X

i=0

A
(⌫)
i (z � z⌫)

r⌫�i (2.5)

with poles located at the positions z⌫ of the punctures; if r⌫ = 0 the puncture z⌫ is regular
and the solution  (z) will develop a branch point at z⌫ , while if r⌫ > 1 the puncture is
irregular and  (z) will have an essential singularity and a Stokes phenomenon can occur.

One of the interesting properties of these systems of linear ODE is that while giving a
specific A(z) determines the monodromy and Stokes matrices of the solution  (z) around
the singularities, the converse is not true: a solution  (z) with prescribed the monodromy
and Stokes matrices around the singularities may correspond to a family of A(z; {~t}) pa-
rameterized by the moduli {~t} of a flat SL(2,C) bundle over the punctured sphere. In the
case we are interested in, namely a sphere with four regular punctures and its degenera-
tions by collisions, there is a one-parameter (t) family of different A(z, t) associated to it.
One is therefore led to consider isomonodromic deformations of A(z, t), i.e. t-dependent
deformations of A(z) which preserve monodromy and Stokes matrices of  (z, t); requiring
the deformation t to be isomonodromic implies  (z, t) satisfies the system

8
>><

>>:

d

dz
 (z, t) = A(z, t) (z, t)

d

dt
 (z, t) = B(z, t) (z, t)

(2.6)

where B(z, t) can determined in terms of the matrices appearing in A(z, t) by the theory
of isomonodromic deformations. This is an overdetermined system whose compatibility
condition

 zt(z, t) =  tz(z, t) (2.7)

implies the equation
At(z, t) = Bz(z, t) + [B(z, t),A(z, t)] (2.8)

which yields a system of non-linear ODEs leading to the Painlevé equations; the matrices
A, B are known as the Lax Pair for the associated Painlevé equation. Notice that (2.8)
can be seen as a gauge transformation of the flat connection A(z, t).

Isomonodromic deformations admit an interesting limit to isospectral deformation
problems (see for example [6]). In order to see this it is convenient to rescale the pa-
rameters of the problem in order to explicitly introduce a “Planck constant”  so that (2.4)
becomes

( @z �A(z)) (z) = 0 (2.9)

If we now rescale time according to t = T0 + T and send  ! 0 (i.e. we focus on the
dynamics around T0) the connection  @z�A(z) reduces to a one-form A 2 ⌦(C0,n, sl(2,C)),
that is a Higgs field in terms of Hitchin integrable systems; moreover in this limit the

– 5 –
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vev of relevant deformationsource of relevant deformation
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Painleve’ “transcendents" and !
gauge theory dual partition function  

We can extend the correspondence to the full gauge theory in the so-called

self-dual       - background

calculation of the p.f.                        relation to string theory
via localization                                 
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Nekrasov-Okounkov dual partition function  !

Theorem:     this is the tau-function for Painleve’ equations!
[Gamayun-Iorgov-Lisovyy, Bershtein-Shedchin, Iorgov-Lisovyy-Teschner]

initial conditions,            monodromy param. 

RGE scale          :  Painleve’ time -  short time expansion corresponds to!
                              weakly coupled electric frame
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Strongly coupled sectors from!
long time expansion of Painleve’

RGE scale          :  Painleve’ time                     strong coupling from long time exp.!

Relation with gauge theories suggests a new expansion of Painleve’ transcendents 
for long times: 

satisfies the σ-PI equation
σ̈2I = 2 (σI − tσ̇I)− 4σ̇3I (3.7)

with respect to the dynamics (3.3). From this one can easily extract the τ -PI equation, i.e.
the equation satisfied by the function τI(t) defined as

σI(t) =
d

dt
ln τI(t). (3.8)

Different forms of PI, such as (3.3) or (3.7), possess a well-known discrete Z5-symmetry. It

may be stated as follows: given a tau function τI(t), the transformation τ̃I(t) = τI
(
e

2πi
5 t
)

yields another PI tau function.
The Stokes data describing the global asymptotic behavior of solutions of the linear

system defined by (3.1) are parameterized by two complex quantities giving a pair of PI
integrals of motion. The leading behavior of q(t) as t → ∞ along the canonical rays
Rk = eπi−

2πik
5 R>0 has been described in terms of Stokes parameters in [53]. Determining

the corresponding long-distance asymptotics of τI(t) and using the equation (3.7) to sys-
tematically compute subleading corrections, we indeed observe a periodic pattern (2.29)
similar to Painlevé VI expansion (2.28):

τ-PI expansion

On the rays arg t = π,±3π
5 ,±π

5 we have

τI(t) = s−
1
10

∑

n∈Z

einρG(ν + n, s), 24t5 + s4 = 0, s ∈ R,

G(ν, s) = C(ν, s)
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1 +
∞∑
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Dk(ν)

sk
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,

C(ν, s) = (2π)−
ν
2 e

s2

45+
4
5 iνs−

iπν2

4 s
1
12−

ν2

2 48−
ν2

2 G(1 + ν),

(3.9)

with G(1 + ν) Barnes G-function. These functions would correspond to the 1-loop part
of our strong-coupling “Nekrasov-like” partition function G(ν, s), and from them we can
read how many light particles there are in the strongly coupled sector under consideration:
in the case at hand there is just one Barnes G-function and therefore a single particle is
light. On the other hand, the coefficients Dk(ν) would correspond to the “k-th instanton”
contribution to the partition function; they can be computed recursively, and the first few
of them are explicitly given by

D1(ν) = − iν(94ν2 + 17)

96
,

D2(ν) = −44180ν6 + 170320ν4 + 74985ν2 + 1344

92160
.

(3.10)

Different rays are characterized by different expressions of the integration constants ν, ρ in
terms of the Stokes data, which is a signature of the nonlinear Stokes phenomenon.
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conjecture [Bonelli, Lisovyy, Maruyoshi, Sciarappa, A.T.]!
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with G(1 + ν) Barnes G-function. These functions would correspond to the 1-loop part
of our strong-coupling “Nekrasov-like” partition function G(ν, s), and from them we can
read how many light particles there are in the strongly coupled sector under consideration:
in the case at hand there is just one Barnes G-function and therefore a single particle is
light. On the other hand, the coefficients Dk(ν) would correspond to the “k-th instanton”
contribution to the partition function; they can be computed recursively, and the first few
of them are explicitly given by

D1(ν) = − iν(94ν2 + 17)

96
,
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.
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Different rays are characterized by different expressions of the integration constants ν, ρ in
terms of the Stokes data, which is a signature of the nonlinear Stokes phenomenon.
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It is plausible that the Fourier representation of τI(t) given by the 1st line of (3.9)
remains valid in the whole complex plane of PI variable t. The 2nd line should then be
interpreted as an asymptotic expansion of the function G(ν, s) (PI irregular conformal block)
as s → ∞. The latter expansion may be expected to hold inside certain sectors; specific
rays Rk are singled out by the condition for the Fourier sum to be a well-defined asymptotic
series for the tau function.

In order to later make contact with four-dimensional theories we do the following: we
redefine s → s/ϵ, ν → ν/ϵ and group the terms with the same power of ϵ in G(ν/ϵ, s/ϵ).
By using

lnG(1 + ν) =

(
ν2

2
− 1

12

)
ln ν − 3

4
ν2 +

ν

2
ln 2π + ζ ′(−1) +

∑

k!1

B2k+2

4k(k + 1)ν2k
, (3.11)

it is easy to show that the logarithm of the function G(ν/ϵ, s/ϵ) nicely reorganizes into
a genus expansion, which as we will see is very natural in gauge theory if we interpret
G(ν/ϵ, s/ϵ) as the partition function for a four-dimensional N = 2 theory in the special
Omega background ϵ1 = −ϵ2 = ϵ. More in detail we obtain

ln
[
G
(ν
ϵ
,
s

ϵ

)]
=
∑

g!0

ϵ2g−2Fg(ν, s), (3.12)

with

F0(ν, s) =
s2

45
+

4

5
iνs+

ν2

2
ln

ν

48is
− 3ν2

4
− 47iν3

48s
− 7717ν4

4608s2
+O(s−3),

F1(ν, s) = ζ ′(−1)− 1

12
ln
ν

s
− 17iν

96s
− 3677ν2

4608s2
+O(s−3),

F2(ν, s) = − 1

240ν2
− 7

480s2
+O(s−3).

(3.13)

and similarly for higher genus Fg(ν, s) functions.

3.2 Painlevé II

There exist several realizations of PII in terms of isomonodromy problems. The Jimbo-Miwa
Lax pair is given by [33, eq. (C.10)]

A = A0 +A1z +A2z
2 =

(
z2 + p+ t/2 u(z − q)

− 2
u(pz + θ + pq) −(z2 + p+ t/2)

)

, (3.14)

B = B0 +B1z =

(
z/2 u/2

−p/u −z/2

)

, (3.15)

and corresponds to a single irregular puncture of degree 8 at infinity. The compatibility
condition (2.8) requires ⎧

⎪⎨

⎪⎩

u̇ = −qu,

q̇ = p+ q2 + t/2,

ṗ = −2pq − θ,

(3.16)

– 17 –
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CHECKS:      genus zero from special geometry on the Coulomb branch 

Seiberg-Witten differential. 

for Nf = 1, 2, 3 in [32]

p(u)
d2Π

du2
+ Π = 0 , (2.9)

where

Nf = 1 : p(u) = 4u2 + 27Λ6
1

64u
Nf = 2 : p(u) = 4(u2 − Λ4

2
64 )

Nf = 3 : p(u) = u(4u − Λ2
3

64 ) .
(2.10)

Using the leading behavior of F (0) and F (0)
D from the 1-loop β-function and analytic

continuation we find Π =

(

a
aD

)

as linear combination of the solutions to (2.9).

We will set the dynamical scales Λ1 = 2
2
3 , Λ2 = 2, Λ3 = 4 in order to match the

convention in the instanton counting calculations in [4, 5].
While in the pure SU(2) gauge there is a Z2 symmetry acting on the u plane,

the discrete symmetries of the u plane in Nf = 1, 2, 3 cases are Z3 symmetry, Z2

symmetry and no symmetry respectively [7, 8]. As we will see, these different discrete

symmetries acting on the u plane in the three cases Nf = 1, 2, 3 play significant role

in determining the qualitative features of the solutions. We will find the structure of

Nf = 2 solution closely resembles that of the case of pure gauge theory in [1], while
the cases Nf = 1, 3 have some different qualitative features respectively.

In the next section we will review the direct integration approach for solving F (g).

Thereafter we discuss the Nf = 1, 2, 3 cases one by one.

2.1 Topological string amplitude F (g) as a polynomial of Ê2

The main goal is to solve the topological sector of the theory and give in particular

the F g(u) everywhere in the Coulomb moduli space. To this end we first extend the

direct integration method of the holomorphic anomaly equations to the SU(2) gauge

theory in this section to the case with massless flavors and in section 3 to the case
with massive flavors. This approach was applied to Nf = 0 in [1] and solved the

theory completely using the gap condition. The point is to show this for theories

with flavors as well.

The holomorphic anomaly equations of [21] read

∂a∂āF (1) = 1
2CaaaCaa

ā ,

∂̄āF (g) = 1
2C

aa
ā

(

DaDaF g−1 +
∑g−1

g=1 DaF (g−h)F (h)
)

, for g > 1 .
(2.11)

Here we used the coordinate a introduced in the last section, but the equations
are of course covariant. We further introduced the Yukawa triple coupling and the

connection Da, whose calculation from the solutions of the Picard Fuchs equation are

discussed below and more generally in section (5.1). First F (0)(a) follows from the

6

Higher genera from holomorphic anomaly equations of B-model topological 
strings on the SW curve in terms of modular forms [Huang-Klemm]:

we performed various checks in the magnetic, dyonic and Argyres-Douglas 
points.
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new viewpoint on strongly coupled amplitudes

what do we gain ?

new long time expansions of Painleve’ tau-functions

systematic approach to their computations in terms of ODEs

link to quantum statistical systems and non-perturbative string
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Matrix model for gauge theory at strong coupling

Consider pure SU(2) Super Yang-Mills in 4d : this corresponds to 

admits a spectral determinant presentation [Zamolodchikov]

By using the Painleve’/gauge theory correspondence we can relate the ’t Hooft 
expansion of the above matrix model with the genus expansion of the dual!
Seiberg-Witten prepotential (             )

and we denoted by S
N

the permutation group of N elements. The TS/ST duality states that
Z
X

(N) is the non-perturbative partition function of topological string on X. More precisely,
by using Cauchy identity this can be written as a matrix model which computes the partition
function of this theory in the conifold frame [15, 56]. When we implement the dual limit at the
level of the matrix model (2.21), we obtain a matrix model expression for the partition function
of SU(2) gauge theories in the magnetic frame. This was done in details for the pure SU(2)
theory in [19] where it was found that the matrix model computing its partition function is a
well known O(2) model

Z4d
2 (M) =

1

M !

Z
MY

i=1

dx
i

4⇡
e�

2⇤
⇡

2
✏

coshx

i

Y

i<j

tanh

✓
x
i

� x
j

2

◆2

. (2.22)

This procedure can be in principle extended to SU(2) theories with matter multiplets as well.
Summarizing the implementation of the dual limit on the TS/ST duality leads to the follow-

ing results in connection with four dimensional N = 2 gauge theories: it gives an operator theory
interpretation of the self-dual ⌦ background, it gives Fredholm determinant representation for
the ⌧ functions of Painlevé equations and it provides a matrix model for the partition function
in the magnetic frame.

3 Non-perturbative string on Y N,0
geometries

The TS/ST duality [15] has been generalized to higher genus mirror curve in [23]. According to
this construction one can associate a set of g operators

{O
i

}g
i=1 (3.1)

to any toric CY manifold, g being the genus of its mirror curve. Of particular interest for
this paper are those CYs from which one can engineer SU(N) supersymmetric gauge theories
[11, 37, 50]. Examples of such geometries are the resolution of the cone over the Y N,0 singularity
studied for instance in [57]. The corresponding mirror curve has genus N �1 and therefore there
are N � 1 di↵erent ”canonical” forms for this curve which reads

O
i

(x1, x2, ⇠) + 
i

= 0, i = 1, · · · , N � 1, (3.2)

where 
i

denote the complex moduli of the geometry. For instance we have

O1(x1, x2, ⇠) + 1 = ex2 + e�x2+(�N+2)x1 +
N�1X

i=1


N�i

e(i�N+1)x1 + ⇠e(�N+1)x1 + ex1 = 0, (3.3)

where ⇠ is the mass parameter and should be distinguished from the others moduli 
i

as empha-
sized for instance in [58]. Therefore, the quantization procedure for the Y N,0 geometry leads to
the following N � 1 operators

O1 + 1 = ex2 + e�x2+(�N+2)x1 +
N�1X

i=1


N�i

e(i�N+1)x1 + ⇠e(�N+1)x1 + ex1 ,

O
j

+ 
j

= Q�1/2
j

(O1 + 1) Q�1/2
j

, 1 < j  N � 2,

(3.4)

– 7 –

fixed

[Bonelli-Grassi-A.T.]
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Spectral determinants and topological strings

topological strings on local 

What is topological string?

Topological string is a theory which “counts” holomorphic maps � : ⌃g ! X

At the perturbative level this theory is characterised by the genus g free energies

which are related to the counting of such maps.Fg(t)

Kähler parameter. If t >>1 : Fg(t) =
X

d2H2(X)

Nd
g e

�dt

�
Riemann surface 
of genus g CP1 ⇥ CP1 = X

d � 1

Gromov-Witten invariants: “count” the 
number of such maps

mirror curve: 

Operator theory and mirror curves

Consider  X = local CP1 ⇥ CP1

mirror symmetry

t

CP1 ⇥ CP1

ex + ep + e�p + e�x = �

complex
modulus

Kähler parameter
quantization
⇥
x̂, p̂

⇤
= i~.

O = ex̂ + ep̂ + e�p̂ + e�x̂

Aganagic,Dijkgraaf, 
Klemm,Marino, Vafa

In this way we obtain an operator acting on L2(R)

OX
. . . . 

Mirror curve to X:

Nekrasov, Shatashvili

[ Witten, 
  Aganagic-Dijkgraaf-Klemm-Marino-Vafa, 
  Nekrasov-Shatashvili]
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Spectral determinants and topological strings

The operator                            admits an analytic spectral determinant

Operator theory and mirror curves

Theorem:    the operator                         is a self-adjoint operator with a positive and 
                      discrete spectrum {e�En}n�0

and it is of trace class

Tr⇢` =
X

n�0

e�`En < 1

AG, Hatsuda,Marino

 Kashaev,Marino

Laptev,Schimmer,Takhtajan

Therefore its spectral determinant

⇢X = O�1
X

X

⌅X(, ~) = det(1 + ⇢X) =
Y

n�0

�
1 + e�En

�

is analytic in      . The fermionic spectral traces are defined as

⌅(, ~) = det (1 + ⇢X(~)) =
X

N�0

NZ⇢
X(N, ~)



Operator theory and mirror curves

Theorem:    the operator                         is a self-adjoint operator with a positive and 
                      discrete spectrum {e�En}n�0

and it is of trace class

Tr⇢` =
X

n�0

e�`En < 1

AG, Hatsuda,Marino

 Kashaev,Marino

Laptev,Schimmer,Takhtajan

Therefore its spectral determinant

⇢X = O�1
X

X

⌅X(, ~) = det(1 + ⇢X) =
Y

n�0

�
1 + e�En

�

is analytic in      . The fermionic spectral traces are defined as

⌅(, ~) = det (1 + ⇢X(~)) =
X

N�0

NZ⇢
X(N, ~)

 [Grassi-Hatsuda-Marino, Kashaev-Marino,  
  Laptaev-Schimmer-Takhtajan]

          density matrix of a Fermi gas with spectral traces

Operator theory and mirror curves

AG, Hatsuda,Marino

Kashaev, Mariño,Zakany

The fermionic spectral traces can be written as 

For the operators arising in the quantization of mirror curves these can be computed 
explicitly. Example: local

Z⇢
X(1, ~) = Tr⇢X

Z⇢
X(1, 2⇡) =

1

4⇡

Z⇢
X(2, 2⇡) =

⇡2 � 8

128⇡2

Z⇢
X(2, ~) = 1

2

⇣
(Tr⇢X)2 � Tr⇢2X

⌘

Examples:

CP1 ⇥ CP1

Z

⇢
X(N, ~) = 1

N !

X

�2SN

(�1)�
Z

dNx⇢X(xi, x�(i))

TS/ST conjecture [Grassi-Hatsuda-Marino]
Topological String and Spectral Theory

The fermionic spectral traces of        provide a non-perturbative 
completion for the topological string partition function on X:

1) it reproduces the perturbative expansion of topological string

2) it is well defined also for any finite value of      and N                  ~

AG, Hatsuda,Mariño

⇢X

 AG, Hatsuda, Mariño: 1410.3382 Kashaev, Mariño: 1501.01014 Mariño, Zakany: :1502.02958
Kashaev, Mariño, Zakany: 1505.02243 

Gu, Klemm, Marino and Reuter: 1506.09176 Hatsuda, Mariño: 1511.02860 Franco, Hatsuda, Mariño: 1512.03061 

Hatsuda: 1601.02728 
Okuyama, Zakany: 1512.06904

Wang, Zhang, Huang 1505.05360 Bonelli, AG, Tanzini: 1603.01174 

· · ·
Couso, Mariño, Schiappa: 1610.06782 

Many tests and applications :

X

g�0

~2�2gFg(t)

N, ~ ! 1, t =
N

~ fixed

logZ⇢
X(N, ~)

Conjecture: Z⇢
X = Ztop

X
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Topological strings and gauge theory in the magnetic phase  

Four-dimensional pure SU(2) gauge theory in the dual magnetic phase is 
described by type IIA superstring on local                 in the limit 

It was found by Katz,Klemm and Vafa that 4d Super Yang-Mills theory can be 
engineered by using topological string. Katz,Klemm,Vafa — Iqbal, Kashani Poor …

⇥CP1 CP1

~ ! 1

Next: we will see that in this limit the previous non-perturbative formulation provides 
some new results in the corresponding four dimensional theory.

tF /~ ! 0 tB/~ ! 1

From Topological String to 4d               SU(N) SYMN = 2

In our example we scale

Note: this is a rescaled version of the standard geometric engineering limit
tB ! 1tF ! 0

        v.e.v. of self-dual graviphoton field strength, a.k.a. topological string coupling 

remark:  it is a rescaled version of geometric engineering limit of Katz-Klemm-Vafa 

[Bonelli-Grassi-A.T.]
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this makes an important difference at the level of quantum operators

associated to the mirror curve:

the standard geometric engineering limit makes contact with NS quantisation
of the underlying Seiberg-Witten curve, in this case quantum Toda chain

[ Hatsuda-Marino]

the rescaled 4d limit gives instead a Fermi gas formulation of Seiberg-Witten

theory in a self-dual        - background

[ Bonelli-Grassi-A.T.]
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in the conifold frame. In the rescaled 4d limit, via Cauchy identity, become  

Topological strings and gauge theory in the magnetic phase  

O(2) matrix model
Kostov, Staudacher

· · ·

Consequences in 4d SYM theory

By using the Cauchy identity we have

This matrix model appeared before in the literature. In particular it is related to

•2D Ising model

• Non-contractible polymer on a cylinder Fendley,Saleur-Zamolodchikov 

Cecotti,Vafa

Our result gives a new meaning to this well-known matrix model from the point of 
view of four dimensional SYM theory: it computes the partition function of pure                             
SU(2)              SYM theory in the 4d selfdual background in the magnetic frame.

• Ideal Fermi gas AG, Mariño

1

M !

X

�2SM

(�1)�
Z

dMx⇢4D(xi, x�(i)) =

1

M !

Z
MY

i=1

dx
i

4⇡
e�2T cosh xi

Y

i<j

tanh

✓
x

i

� x

j

2

◆
2

Z⇢
4D =

=

N = 2

classical system 

density matrix

The classical limit:

E1

E2

confining
potentialkinetic term

log (2 cosh p/2) ⇡
(

log 2 +

p2

8 if p << 1

|p|
2 if p >> 1 : ultra relativistic 

: non-relativistic 

We can think of           as the density matrix of an ideal Fermi gas

⇢
4D

= e

�T cosh x̂

2 cosh

�1

✓
p̂

2

◆
e

�T cosh x̂

Hcl
4d(x, p) = log (2 cosh p/2) + 2T coshx

Consequences in 4d SYM theory

E0

⇢4D

The classical limit:

E1

E2

confining
potentialkinetic term

log (2 cosh p/2) ⇡
(

log 2 +

p2

8 if p << 1

|p|
2 if p >> 1 : ultra relativistic 

: non-relativistic 

We can think of           as the density matrix of an ideal Fermi gas

⇢
4D

= e

�T cosh x̂

2 cosh

�1

✓
p̂

2

◆
e

�T cosh x̂

Hcl
4d(x, p) = log (2 cosh p/2) + 2T coshx

Consequences in 4d SYM theory

E0

⇢4Dcoincides with Painleve’ upon 

Fermionic spectral traces for local                computed by [Kashaev-Marino-Zakany] 

[Bonelli-Grassi-A.T.]



Order E0 E1

1 0.5689929450193 2.7765099480066
2 0.5689930227978 2.7765099634917
4 0.5689930268761 2.7765099636767
Numerical value 0.5689930268761 2.7765099636767

Table 1. The first two energy levels for the operator (4.2), obtained from the vanishing locus of the ⌧
function (3.26) as explained in equation (4.10). The expression of ⌅4d

S (T,�) is given as a convergent series
at small T . As we keep more terms in the series expansion we quickly approach the energy obtained by
using the numerical methods of [36] applied to (4.2). We take T 1/4 = ⇡

21 .

Therefore the region which is interesting from the spectral theory point of view is parametrized
by 5

� =
1

2
+ i�r, �r 2 R/{0}. (4.9)

By using this dictionary we can compute numerically the zeros of (3.26) which give the spectrum
of the Fermi gas described by (4.2). More precisely we have

{En}n=0,1,... =

⇢
log


1

2⇡
cosh(2⇡�(n)

r )

�
: ⌅4d

S (T,
1

2
+ i�(n)

r ) = 0

�
. (4.10)

In Table 1 we compare the numerical spectrum of the operator (4.2) with the zeros of (3.26): we
find perfect agreement. Therefore the vanishing locus of the ⌧ function which solves the Painlevé
III3 equation gives the spectrum of the operator (4.2), as we showed analytically in Section 3.

If we consider the gauge theory perspective, the results of Section 3 show that the spectrum
of (4.2) is computed by the 4 dimensional Nekrasov partition function [60]

ZNek(✏, a,⇤) (4.11)

where the equivariant parameters are set to ✏1 = �✏2 = ✏. Indeed we have

ZNek(✏, a,⇤) = Z(�, T ) =
T �2

B(T,�)

G(1� 2�)G(1 + 2�)
, (4.12)

where

� = a/✏, T =
⇤4

24✏4
. (4.13)

In [28] the authors introduced the dual partition function as

ZNO(⌘,�, T ) =
X

n2Z
e4⇡in⌘Z(� + n, T ). (4.14)

Our analysis shows that this dual partition function, at ⌘ = 0, corresponds to the grand canonical
partition function of an ideal Fermi gas whose density matrix is given by (4.2). In this corre-
spondence the Seiberg–Witten period � and the instanton counting parameter T correspond to
the chemical potential of the gas and the strength of the external potential respectively.

5 In Section 3 we restrict ourself to i� 2 R/{0} to make contact with the topological string parameters. However
from the four dimensional perspective we can take more general values of � as in [27] and in [18–22]. From the
topological string perspective this translates into the necessity of extending the conjecture [23] to arbitrary complex
values of ~,m. In particular notice that for 2� 2 Z+ iR/{0} one can still invert the mirror map as in appendix A
and (3.11) still vanishes.

– 13 –

The zeroes of the Painleve’ III3 tau-function give the spectrum of the 
quantum Fermi gas : 
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TS/ST in 4 dimensions

By using the results of Zamolodchikov and others, it follows that the same equation 
is satisfied by the following tau function

⌧(T,) = e4
p
T det (1 + ⇢4D)

with the same asymptotics as the NO partition function.

The zeros of the NO 
partition function give 
the spectrum of ⇢4d


-100 -80 -60 -40 -20 20

10

20

30

⌧(21/⇡,) = ZNO(, 21/⇡)

quantum statistical system associated to gauge theory in the self-dual!
Omega background!
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Topological strings and SU(N) gauge theories  

Analogous scaling limit of topological strings describing SU(N) gauge theories 
gives the matrix model [Bonelli-Grassi-A.T. ] :

The higher genus generalisation can be used to obtain the partition function of 4 dim 
                           SYM theory in the magnetic frameN = 2, SU(N)

di, fi : shifts that depend on N

[15], in the spirit of large N dualities, a non–perturbative formulation of topological string on
toric Calabi-Yau (CY) has been proposed. This formulation has proved to be extremely rich
and constructive leading to several new results and applications in various related fields such as
integrable systems [16–18], supersymmetric gauge theories [19, 20] and condensed matter [21, 22].
The non-perturbative proposal of [15] was originally formulated only for CYs whose mirror curve
has genus one but it has been extended to higher genus mirror curves in [23].

In [19] a link between this non-perturbative completion of topological string and isomon-
odromy problems arising from four dimensional gauge theories has been found in the special
case of SU(2) Super Yang-Mills (SYM). The relevant isomonodromy problem in this case is the
one associated to Painlevé III3 (also called IIID8) equation whose ⌧ -function is known since a
long time [24] to admit a Fredholm determinant description. Upon a suitable four dimensional
scaling limit, the non-perturbative completion of topological string has been shown to be directly
related to the Fredholm determinant above. This produces a matrix model presentation of the
gauge theory partition function in the strongly coupled magnetic frame and provides an operator
theory interpretation of the self–dual ⌦ background (✏1 = �✏2 = ✏).

The purpose of this paper is to extend these results to SU(N) gauge theories. More precisely,
in section 2 we review the consequences of the genus one proposal for SU(2) theories. In section
3, by following the general prescription of [23], we derive the matrix models computing the
topological string partition function on the Y N,0 geometries. The result is given by the N�1 cut
matrix model shown in (3.23). Then, in section 4, we perform the so-called dual four dimensional
limit [19] on these models and we make contact with N = 2 SU(N) SYM in the four dimensional
self-dual ⌦ background [10]. More precisely we find that the partition function in the magnetic
frame is given by

Z4d
N (M1, · · · ,MN�1) =

1

M1! · · ·MN�1!

Z
dMx

(2⇡)M

N�1Y

j=1

Y

i

j

2I
j

e�
N⇤
⇡

2
✏

sin(⇡j

N

) cosh(x
i

j

)

⇥
Q

1i<jM

2 sinh
⇣
x

i

�x

j

2 + 1
2(di � d

j

)
⌘

2 sinh
⇣
x

i

�x

j

2 + 1
2(fi � f

j

)
⌘

Q
M

i,j=1 2 cosh
⇣
x

i

�x

j

2 + 1
2(di � f

j

)
⌘ ,

(1.1)
where ⇤ denotes the instanton counting parameter in gauge theory. The shifts f

i

, d
i

are given in
(3.23) and they depend on the rank N of the gauge group. We also used

I
j

=

"
j�1X

s=0

M
s

,
jX

s=1

M
s

#
\ N, M0 = 1, M =

N�1X

i=1

M
i

. (1.2)

As a consequence we have a spectral determinant representation for the four dimensional Nekrasov-
Okounkov partition function associated to these SU(N) theories as shown in section 4.2. We
expect this to be the ⌧ -function of the isomonodromy problem associated to the Hitchin’s system
describing the relevant SW curve, see the end of section 4.2.

2 Reviewing the SU(2) case

The TS/ST duality [15] has led to various exact results in topological string and in spectral theory
which allows us to explore all range of the couplings in both side of the duality. We denotes by
g
s

the coupling constant of string theory and by ~ ⇠ g�1
s

the Planck constant appearing in the
spectral theory side of the correspondence.
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[15], in the spirit of large N dualities, a non–perturbative formulation of topological string on
toric Calabi-Yau (CY) has been proposed. This formulation has proved to be extremely rich
and constructive leading to several new results and applications in various related fields such as
integrable systems [16–18], supersymmetric gauge theories [19, 20] and condensed matter [21, 22].
The non-perturbative proposal of [15] was originally formulated only for CYs whose mirror curve
has genus one but it has been extended to higher genus mirror curves in [23].

In [19] a link between this non-perturbative completion of topological string and isomon-
odromy problems arising from four dimensional gauge theories has been found in the special
case of SU(2) Super Yang-Mills (SYM). The relevant isomonodromy problem in this case is the
one associated to Painlevé III3 (also called IIID8) equation whose ⌧ -function is known since a
long time [24] to admit a Fredholm determinant description. Upon a suitable four dimensional
scaling limit, the non-perturbative completion of topological string has been shown to be directly
related to the Fredholm determinant above. This produces a matrix model presentation of the
gauge theory partition function in the strongly coupled magnetic frame and provides an operator
theory interpretation of the self–dual ⌦ background (✏1 = �✏2 = ✏).

The purpose of this paper is to extend these results to SU(N) gauge theories. More precisely,
in section 2 we review the consequences of the genus one proposal for SU(2) theories. In section
3, by following the general prescription of [23], we derive the matrix models computing the
topological string partition function on the Y N,0 geometries. The result is given by the N�1 cut
matrix model shown in (3.23). Then, in section 4, we perform the so-called dual four dimensional
limit [19] on these models and we make contact with N = 2 SU(N) SYM in the four dimensional
self-dual ⌦ background [10]. More precisely we find that the partition function in the magnetic
frame is given by

Z4d
N (M1, · · · ,MN�1) =

1

M1! · · ·MN�1!

Z
dMx

(2⇡)M

N�1Y

j=1

Y

i

j

2I
j

e�
N⇤
⇡

2
✏

sin(⇡j

N

) cosh(x
i

j

)

⇥
Q

1i<jM

2 sinh
⇣
x

i

�x

j

2 + 1
2(di � d

j

)
⌘

2 sinh
⇣
x

i

�x

j

2 + 1
2(fi � f

j

)
⌘

Q
M

i,j=1 2 cosh
⇣
x

i

�x

j

2 + 1
2(di � f

j

)
⌘ ,

(1.1)
where ⇤ denotes the instanton counting parameter in gauge theory. The shifts f

i

, d
i

are given in
(3.23) and they depend on the rank N of the gauge group. We also used
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The purpose of this paper is to extend these results to SU(N) gauge theories. More precisely,
in section 2 we review the consequences of the genus one proposal for SU(2) theories. In section
3, by following the general prescription of [23], we derive the matrix models computing the
topological string partition function on the Y N,0 geometries. The result is given by the N�1 cut
matrix model shown in (3.23). Then, in section 4, we perform the so-called dual four dimensional
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[Klemm-Lerche-Theisen,D’Hoker-Phong,Edelstein-Mas,Edelstein-Gomez-Reino-Marino,Douglas-Shenker]

very hard to compute by other methods!
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Perturbing the massless monopole point

                                massless monopole point 

One cut matrix model, with e.g.  

If we keep only one non–vanishing period, namely

a(1)
D

6= 0, (4.30)

the partition function is described by the following one-cut matrix model
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This matrix model computes the fermionic spectral traces of the following kernel
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Hence, it follows from [73] that
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i
, k 2 Z (4.34)

fulfills the first equation of Toda hierarchy which reads

q
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q
0
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= eq`�q
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` , (4.35)

where
t = (2 sin (⇡/N) g

s

)�1. (4.36)

It follows from [74, 75] that (4.35) arises as compatibility condition for the isomonodromy defor-
mations of an SL(N,C) connection on a cylinder with regular singularities at zero and at infinity.
This agrees with our general expectation (see discussion at the end of the previous subsection)
and it gives a concrete relation between the SU(N) matrix models presented above and the tt*
equations of [71]. More precisely, by considering the N -covering z = wN of the SW geometry
(4.27) one gets the radial component of the Hitchin’s connection as (see Chapter 5 of [76])
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where q = diag(q0, . . . , q
N�1) with the traceless condition q0 + . . . + q

N�1 = 0, ↵ are the roots
of Â

N�1 algebra, ↵0 being the one associated to the a�nization. The above is precisely the
connection whose isomonodromy problem gives rise to closed Toda chain equations as explained
in [74, 75]. Notice that this is describing the tt⇤ geometry of the Landau-Ginzburg model whose
potential is associated to the A

N�1 singularity. In the one-period case one considers isomon-
odromy with respect to the length of the cylinder which corresponds to the Yang-Mills coupling
of gauge theory. We expect the higher times of Toda hierarchy to be related with the insertion
of local observables giving rise to new terms in the potential of the kind T

n

cosh(nx), T
n

being

– 15 –

If we keep only one non–vanishing period, namely

a(1)
D

6= 0, (4.30)

the partition function is described by the following one-cut matrix model

Z(1)
4d (M) =

1

M !

Z
dMx

(2⇡)M

MY

i=1

e�
1
g

s

cosh(x
i

)

Q
i<j

4 sinh
⇣
x

i

�x

j

2

⌘2

Q
i,j

2 cosh
⇣
x

i

�x

j

2 + i⇡�,
⌘ , � =

2 �N

2N
. (4.31)

This matrix model computes the fermionic spectral traces of the following kernel

K(x, y) = e� cosh(x)/2g
s

1

4⇡ cosh
⇣
x�y

2 � i⇡ (N�2)
2N

⌘e� cosh(y)/2g
s , x, y 2 R, (4.32)

namely

Z(1)
4d (M) =

X

�2S
M

(�1)�
1

M !

Z
dMx

MY

i=1

K(x
i

, x
�(i)). (4.33)

Hence, it follows from [73] that

q
k

= log
h
det(1 � e2(k+1)i⇡/NK)/ det(1 � e2ki⇡/NK)

i
, k 2 Z (4.34)

fulfills the first equation of Toda hierarchy which reads

q
00
`

+
1

t
q
0
`

= eq`�q

`�1 � eq`+1�q

` , (4.35)

where
t = (2 sin (⇡/N) g

s

)�1. (4.36)

It follows from [74, 75] that (4.35) arises as compatibility condition for the isomonodromy defor-
mations of an SL(N,C) connection on a cylinder with regular singularities at zero and at infinity.
This agrees with our general expectation (see discussion at the end of the previous subsection)
and it gives a concrete relation between the SU(N) matrix models presented above and the tt*
equations of [71]. More precisely, by considering the N -covering z = wN of the SW geometry
(4.27) one gets the radial component of the Hitchin’s connection as (see Chapter 5 of [76])

A =
@

@r
q + w�1

0

@e�↵0qE�↵0 +
X

↵ simple

e↵qE
↵

1

A + w

0

@e�↵0qE
↵0 +

X

↵ simple

e↵qE�↵

1

A (4.37)

where q = diag(q0, . . . , qN�1) with the traceless condition q0 + . . . + q
N�1 = 0, ↵ are the roots

of Â
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corresponds to isomonodromic deformations of                   flat connection
on the cylinder with regular singularities at  0  and         [Cecotti-Vafa, Guest-Its-Lin].
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q-Painleve’, five dimensional gauge theories !
and topological strings

The 4d Renormalization Group diagram is part of a bigger picture which

comes from the embedding of gauge theories in string theory.

This also has a counterpart in Painleve’ theory by going to the multiplicative 

case.
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five dimensional gauge theories with            fundamental hypers

are relevant deformations in the IR of strongly coupled SCFTs with 
exceptional global symmetries

Seiberg’s classification:

from 7 to 0 via  holomorphic decoupling of masses

reduction to four dimensions:  

         -  radius going to zero
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Sakai’s classification of q-Painleve’ :

A
(1)
7

% &
A

(1)
0 ! A

(1)
1 ! A

(1)
2 ! A

(1)
3 ! A

(1)
4 ! A

(1)
5 ! A

(1)
6 ! A

(1)0

7 A
(1)
8

& & & & &
D

(1)
4 ! D

(1)
5 ! D

(1)
6 ! D

(1)
7 ! D

(1)
8

& & #
E

(1)
6 ! E

(1)
7 ! E

(1)
8

Table 4. The list of affine root systems associated to discrete Painlevé equations.

A
(1)
1

% &
E

(1)
8 ! E

(1)
7 ! E

(1)
6 ! D

(1)
5 ! A

(1)
4 ! (A1 +A2)

(1) ! (A1 +A1)
(1) ! A

(1)
1 –

& & & & &
D

(1)
4 ! A

(1)
3 ! (A1 +A1)

(1) ! A
(1)
1 ! –

& &
A

(1)
2 ! A

(1)
1 ! –

Table 5. The list of the symmetries of discrete Painlevé equations.

of these theories are expected to be related to the solutions of the discrete Painlevé
equation. Indeed in [46] it was argued that the latter agrees with q-deformed Virasoro
conformal blocks. With help of the 5d AGT correspondence [47] this is related to the
Nekrasov partition function of five-dimensional SU(2) theory. It would be interesting
to pursue this point further.

• relation to BPS spectra counting and quivers via triangulation of (bordered) Rieman
surface

• refined case ✏1 + ✏2 6= 0 and quantum Painleve’ ?

• higher rank/genus isomonodromy ?

• a proposal for S4 partition function of Argyres-Douglas theories. can be formulated by
using the results on Painlevé. These provide a natural candidate for the perturbative
part of gauge theory partition function around AD points and we can use it to make
a proposal for the squashed S4 (recall that for Painlevé ✏1+ ✏2 = 0) partition function
in this regime.

• varie ed eventuali
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Backlund symmetries table: Weyl group of the affinization of flavour 

symmetry group of the corresponding 5d/4d gauge theory.

                gauge theories on                        are geometrically engineered

by topological strings on local del Pezzo surfaces.
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e.g. up to                   :

topological strings on local Hirzebruch and their blow-ups provide 
conjectural tau-functions for q-Painleve’

for toric geometries non-perturbative topological string would provide 
a candidate spectral determinant  for those tau-functions.VI V Vdeg

III1

IV

IIJM

III2 III3

IIFN

I

Figure 1. In the upper line we have a list of polyhedra representing del Pezzo surfaces S [53, 54]
connected to the coalescence diagram of Painlevé equations through an arrow. The total space of the
canonical bundle over S is a CY manifold and we can put topological string theory on it. In particular
we can consider the TS/ST duality for these manifolds. Once we implement the dual 4d limit on the
determinants appearing in this duality we recover the tau function of a corresponding Painlevé equation.
Also notice that there may be di↵erent del Pezzo’s which engineers the same Painlevé equation. In the
figure we have chosen one of them [51].

fore this construction gives a geometrical meaning to the operators whose spectral determinant
compute the ⌧ function of Painlevé equations: these arise by quantizing mirror curves to CY
geometries and performing the dual limit. The details of this limit have been worked out for
pure SU(2) in [19] which makes contact with the local P1 ⇥ P1 geometry and the Painlevé III3
equation. In this case the equation (2.18) read

det(1 + ⇢4DP1⇥P1

) = e
log(2)

12

+3⇣0(�1)T�1/16e4
p
T

X

n2Z
ZNek(� + n, T ), (2.19)

where we used

 =
cos (2⇡�)

2⇡
, T =

✓
⇤

4⇡2✏

◆4

(2.20)

and ⇢4DP1⇥P1

is the inverse of (2.14). More precisely

⇢4DP1⇥P1

= e�4T 1/4 cosh(u) 4⇡�
ev/2 + e�v/2

�e�4T 1/4 cosh(u), [u, v] = 2⇡i. (2.21)

Moreover we denoted by ZNek(�, T ) the Nekrasov partition function, namely

ZNek(�, T ) =
T �

2

G(1 � 2�)G(1 + 2�)

 
1 +

T

2�2
+

�
8�2 + 1

�
T 2

4�2 (4�2 � 1)2
+ O(T 3)

!
. (2.22)

Sometimes we refer to
ZNO(�,⇤, ✏) =

X

n2Z
ZNek(� + n, T ) (2.23)

as the Nekrasov-Okounkov partition function. The statement (2.19) can be proved by using the
relation with the Painlevé III3 equation as explained in [19].
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it works for q-PIII3 tau function [Bonelli-Grassi-A.T., to appear]
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Concluding remarks

gauge theory partition functions/BPS correlators and isomonodromy:

window on strongly coupled sectors of gauge and string theories

quantum statistical systems capturing self-dual Omega background

Some open problems 

a new class of matrix models for magnetic phase 

direct derivation of matrix model from gauge theory

including matter fields

breaking to N=1, confinement and condensates

non-perturbative string: frame dependence, relation to isomonodromy
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