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—xact results in Quantum Field Theories

Going beyond perturbation theory is an important challenge in

Quantum Field Theory and String Theory.

N=2 supersymmetric gauge theories in four dimensions are useful to study:
e exact non-perturbative effects (instantons)

e strong-weak coupling dualities

e confinement through breaking to N=1

systematic study of the above lead to discover rich algebraic and integrable

structures, which had deep impact also in mathematics.



—xact results in Quantum Field Theories

In the weak coupling phase the supersymmetric path integral can be

reduced via equivariant localization to combinatorial objects - Nekrasov
function, matrix models - paving the way to the link with rich algebraic
structures as CFT - type algebrae (Virasoro, W - algebrae, Kac-Moody)

and quantum integrable systems.

In the strong coupling phase the embedding in superstring theories
provides a crucial tool to explore S-duality and to calculate protected

gauge theory quantities - e.g. holomorphic anomaly equations,

topological recursion.



—xact results in Quantum Field Theories

In this talk we will show how to compute a class of gauge theory amplitudes

in strongly coupled phases by reducing them to the solutions of non-linear
ODEs . These are associated to a set of isormonodromy problems and display
a deep link with the non-perturbative completion of topological string proposed

by Grassi, Hatsuda and Marino.



Today’s talk: gauge theory partition functions and BPS correlators
as T -functions of isomonodromy problems

N=2 gauge theories isomonodromy problems

quantum statistical systems and non-perturbative string

new tools to explore strongly coupled phases/
sectors of gauge theory



based on:

G. Bonelli, O. Lisovyy, K. Maruyoshi, A. Sciarappa, A.T. 1612.06235

G. Bonelli, A. Grassi, A.T. arXiv:1603.01174, 1704.01517 & to appear



N=2 supersymmetric gauge theories in 4d

class S: M-theory compactification from 6d naturally hints a
relation with 2d theory

description in terms of Hitchin's algebraic integrable system

Renormalization group equations of SU(2) asymptotically free gauge
theories are systematically described by Painleve’ equations

Spectral determinant presentation of Painleve’ tau-function hints
to a new relation between gauge theory and quantum statistical
systems via geometric engineering limit of non-perturbative string

Generalisation to higher rank: new class of Matrix models
describing the magnetic phase of pure SU(N) Super Yang-Mills
theories.



Seiberg-Witten curve from M-theory

[Klemm-Lerche-Mayr-Vafa-Warner,
Witten, Gaiotto]

- ) 7
Consider M-theoryon R™ X @ %< holomorphic symplectic

two-fold

decoupling gravity — local geometry R% x T*C x R?

r M5 braneson R? x C in the Coulomb branch

Y +Z¢k " =0

holomorphlc k-ditferential



St compactification gives rise to U(r) Super Yang-Mills theory in 50

on R3 x C . BPS vacua invariant under Super-Poincare’ of ]RS

satisty Hitchin’s equations

these are equivalent to the flatness of the SL(?“, (C) connection

R
A:Z¢+A+RC¢;



Seiberg-Witten curve and Hitchin’s system

_/\/l IS HyperKahler ~ twistor parameter ( € CP!

R
A2290+A—|—RC¢;

for ¢ — 0 basespace {f described by

O (z) = tr "

SW curve is the spectral curve

det(y — ) =0
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Seiberg-Witten curve and Hitchin’s system

Hitchin's complex algebraic integrable system:

Mgs gt phase space (dim=2r)
(HyperKahler)

Lagrangian fibration

base (dim =r)

./\/l s =U
R (Special Kahler)

Coulomb branch of 4d gauge theory
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Polar structure of the k-differentials

M5 brane on R* x fiber — simple pole for the k-dift.

! !

matter sector residue: mass

Collision of poles with suitable rescalings of the residues

changes the matter sector
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for SU(2) gauge theory

quadratic differentials on a Riemann sphere with at most

four simple poles:

Ny =4 superconformal gauge theory

hol. decoupl. of matter
collision of simple poles

Argyres-Douglas sect.
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holomorphic decoupling: Lagrangian theories

A% 2u A
Nr=0: — 4+ — + —,
d 23 i 22 i 2
A° 3u  2Am
Nr=1: — 4+ = A?
! 23 22 2 A
A% 2A du  2A
Ny =2 gy Z?l Z—Z :7,2 + A?, (first realization)
2 2 A2 A2 .
Ny=2: m—; + - + +u “ (second realization)
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Argyres-Douglas sectors:

Hy: 2° —3cz+u

Hy: z* +4cz* 4+ 2mz +u, (first realization)

U m2

Hy: z+c+ —+ —, (second realization)
z

u-+2cm_ m

Hy: 2° 4 2cz + (2m + ) A - —
& &
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Ny =2(I)— Ny=1—N;=0

> N

2 (1)

/

3 — N;

H1 (I) - H()

Ny =4 — Ny
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Painleve’ coalescence diagram

Classification problem for ODEs

Painleve’ property: ODE with only movable poles
G = Fl(q,¢;t),

F rational function of ¢,q analyticint: full classification

Pl —— PIllly —— PIII,

X

PVI——= PV —— PV, PII;

N

PlV —— PllpN
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Painleve’ and isomonodromy deformations

Linear system: (li az — A(Z))\IJ(Z) = 0

- A(V) (Z) v (7/ —1
Al =2, (z — z,)rvtl A ZA ¢ )

A(z) €5l(2,C), 2 affine coordinate on punctured sphere
isomonodromy: family A(z; {t}) of flat SL(2,C) conn.

four punctures —— one parameter t

/

d

! dz
| Sz 1) = B, Uz,

—U(z,t) = A(z,t)¥(2,1)
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Compatibility condition W.t(z,t) = Wes(2,1) -

Ay(z,t) =B, (2,t) + [B(z,t), A(z,1)]

namely variation of flat conn. is infinitesimal gauge transt.
yields Painleve’ equations. A B : Lax pair

k — (0 isospectral deformations, leave invariant
det(y — A) =0, > € T*Con

Seiberg-Witten curve ! Upon ident. A = ¢
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example: Painleve’l vs HO Argyres-Douglas

L 2 2 2
A= Agtzdy +24,= | P TS
4z — 4q P

2
B =B+ 2B = (0 q+z/ )

2 0
compatibility
qg=1p .
{P6q2+t _> i=6q" +1

quad. different.

1 1
S Tr A? = 42° + 2tz + 204(1) or(t) = 5p° = 2¢° — gt
coincide with SW curve uponident. { ~c, o7~ U

source of relevant deformation vev of relevant deformation
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Painlevé isomonodromy problem

N = 2 theory Hitchin system

punctured Riemann sphere Cy ,, |2]

Gaiotto surface Co 2]

connection k0, — A(z)

holomorphic (D, + Ry, (z) (gauge A, = 0)

i1Isomonodromic deformations

Whitham deformations

compatibility condition

gauge transformation

overall scale k

parameter ¢ of complex structure J of M

isospectral limit x — 0 (Higgs bundle)

limit ¢ — 0 to complex structure I (Higgs bundle)

Painlevé time ¢

gauge coupling A, ¢

Painlevé o-function (Hamiltonian)

Coulomb branch parameter u

Painlevé free parameters
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— Nf—l — Nf—O

Nf—4—>Nf—3 — Nf—2 11%1 _, HO

\ Hy — HI(H) -

Pl —— PIll, —— PIII,

X

PVI—— PV ——> PV, PIT
PIV — = PIIpn
VI V 111, Vdeq L, | I [1v] Iy | Ilpx

= Nf =3 Nf :2(1St) Nf :2(2nd) Nf =1 Nf =0 HQ H1 (1St) H1 (an)
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Painleve’ “transcendents" and
gauge theory dual partition function

We can extend the correspondence to the full gauge theory in the so-called

self-dual () - background

N

calculation of the p.f. relation to string theory

via localization

Znek(a,m; A, €) = exp _ Z 9 *F,(a,m; )
9
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Nekrasov-Okounkov dual partition function

ZNO (CL/G, m; A, 77) — Z e4ﬂinnZNek(a’ T NE, M; A)
nes

Theorem: this is the tau-function for Painleve’ equations
[Gamayun-lorgov-Lisovyy, Bershtein-Shedchin, lorgov-Lisovyy-Teschner]

(a/e = 0, 77) initial conditions,{m} monodromy param.

RGE scale A . Painleve’ time - short time expansion corresponds to
weakly coupled electric frame

T(t) ~ Y €™ Zne(0 + n, t)
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Strongly coupled sectors from
long time expansion of Painleve’

strong coupling from long time exp.

RGE scale A - Painleve’ time

Relation with gauge theories suggests a new expansion of Painleve’ transcendents

for long times:

: . D
7(8) ~ Zempg(u—l—n, s), G(v,s) =C(v,s) 1+Z kiy)}
ne k=1 5
conjecture [Bonelli, Lisovyy, Maruyoshi, Sciarappa, A.T.]
v.s 29—2
|G (7 7)| = 2 F )
g=0 ﬁ
S-dual prepotential UV =ap
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CHECKS: genus zero from special geometry on the Coulomb branch

— %ff :}éA(u) , ap=}€3)\(u)

Au) = /2 Seiberg-Witten differential.

a

Higher genera from holomorphic anomaly equations of B-model topological
strings on the SW curve in terms of modular forms [Huang-Klemm]:

aaaaF<1) — %Caaacgaa

105 (DuD,Fo + U2 DLFOE®) | for g > 1

5. F(9)

we performed various checks in the magnetic, dyonic and Argyres-Douglas
points.

20



what do we gain ?
new viewpoint on strongly coupled amplitudes
systematic approach to their computations in terms of ODEs

new long time expansions of Painleve’ tau-functions

link to quantum statistical systems and non-perturbative string
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Matrix model for gauge theory at strong coupling
[Bonelli-Grassi-A.T.]

Consider pure SU(2) Super Yang-Mills in 4d : this corresponds to PI113

TPIII; admits a spectral determinant presentation [Zamolodchikov]

M >0
M 2
1 dZE@ — 28 cosh I I Ly — X

By using the Painleve’/gauge theory correspondence we can relate the 't Hooft
expansion of the above matrix model with the genus expansion of the dual
Seiberg-Witten prepotential (A = 1)

log Zpr = Z e?9"*F (ap)
qg>0

e_l,M—>oo : Me = ap fixed
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Spectral determinants and topological strings

topological strings on local ]P’1 X IP’I

Riemann surface — > _x
of genus g B

MmIrror curve:

e’ +ef +e P +e " =—x

[ Witten, o
Aganagic-Dijkgraaf-Klemm-Marino-Vafa, quantization
Nekrasov-Shatashvili] [53 ﬁ] — B
’ - .

A A

Ox=¢" +eP +e P e ?
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Spectral determinants and topological strings

The operator pPx = O}l admits an analytic spectral determinant

[Grassi-Hatsuda-Marino, Kashaev-Marino,
Laptaev-Schimmer-Takhtajan]

=(r,h) =det (1 + kpx(h)) = Z /QN

PXx density matrix of a Fermi gas with spectral traces

1 o)
Z&(N, h) = N Z (—1) /dNa:pX(azi,ajg(i))

. ocESN
TS/ST conjecture [Grassi-Hatsuda-Marino]

75 = 7P

T ——————
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Topological strings and gauge theory in the magnetic phase
[Bonelli-Grassi-A.T.]

Four-dimensional pure SU(2) gauge theory in the dual magnetic phase is
described by type IIA superstring on local P! x P! in the limit

-

tp/h—0 tg/h— o0 h — oo

1/h ~ gs v.e.v. of self-dual graviphoton field strength, a.k.a. topological string coupling

remark: it is a rescaled version of geometric engineering limit of Katz-Klemm-Vafta
tp >0 tg — o0
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this makes an important difference at the level of quantum operators

assoclated to the mirror curve:

the standard geometric engineering limit makes contact with NS quantisation
of the underlying Seiberg-Witten curve, in this case quantum Toda chain

€1 = fL, €o = () [ Hatsuda-Marino]

the rescaled 4d limit gives instead a Fermi gas formulation of Seiberg-Witten

theory in a self-dual Q - background

€1 = —€9 = € [ Bonelli-Grassi-A.T.]

32



Topological strings and gauge theory in the magnetic phase
[Bonelli-Grassi-A.T.]

Fermionic spectral traces for local P! x P! computed by [Kashaev-Marino-Zakany]

in the conifold frame. In the rescaled 4d limit, via Cauchy identity, become

TP (—1)U/dep4D(a?i,$a(i))

_ 1 dz; 2T cosh x; Lg — Xy :
_M/H47Te Htanh( 5

=1 1<J

coincides with Painleve’ upon 1" ~ A /e

density matrix .
PAD = e—Tcosh:%QCOSh—l (g) e—Tcoshm

classical system
HE (z,p) = log (2coshp/2) + 2T cosh x
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The zeroes of the Painleve’ llI3 tau-function give the spectrum of the
quantum Fermi gas :

7

{Entn—01.. = {log lzi cosh(27m7(a"))] = (T, % +io(M) = O} .

7(21/m, k) = ZN° (K, 21 /)

The zeros of the NO
partition function give
the spectrum of P4d

100 -80 -60 -40 -20 — | 20
' Y

quantum statistical system associated to gauge theory in the self-dual
Omega background

34



Topological strings and SU(N) gauge theories

Analogous scaling limit of topological strings describing SU(N) gauge theories
gives the matrix model [Bonelli-Grassi-A.T. ] :

1 N—
ZSYM(

— 1n—7 x;
Mi, e, My—1) =g NTsin( 3 ) coshiai;)

N

[licicj<ps 2sinh ( i;% +5(di — dj)) 2sinh (mi;% +5(fi = fj))
[T 2cosh (255 + 3(di — )

X

N-1cuts, d;, fz are N-dependent phase shifts.
We checked this to reproduce the dual Seiberg-Witten prepotential with

ap, = MiT_l

F(f) (a7b ) [Klemm-Lerche-Theisen,D’Hoker-Phong,Edelstein-Mas,Edelstein-Gomez-Reino-Marino,Douglas-Shenker]

F gD (a%5) ,g>2 very hard to compute by other methods!
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Perturbing the massless monopole point

ap =0 massless monopole point

One cut matrix model, with e.g.  ap # 0

N2
Hz’<j481nh( 123) _2—-N
[1; ; 2 cosh (%;% +i7r6,) 2N

M

(1) o 1 de —icosh(mz-)
200 =5 [ oy 1o

=1

1=

fermionic spectral traces of

1

e_ COSh(y)/2gS x y E R
— ] N_2 3 ) 3
47 cosh (%—y — 17r%)

K(az,y) — e cosh(x)/2gs

spectral determinant satisfies the equations of AN_1 Toda chain:

1/ ]_ / _ —
qy 4+ qu — 9~ 9—-1 _ p9t+1 qg)

corresponds to isomonodromic deformations of SL(/N, C)flat connection
on the cylinder with regular singularities at 0 and OO [Cecotti-Vafa, Guest-Its-Lin].
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g-Painleve’, five dimensional gauge theories
and topological strings

The 4d Renormalization Group diagram is part of a bigger picture which

comes from the embedding of gauge theories in string theory.

This also has a counterpart in Painleve’ theory by going to the multiplicative

case.
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SU (2) five dimensional gauge theories with [V f fundamental hypers

are relevant deformations in the IR of strongly coupled SCFTs with
exceptional global symmetries

Seiberg’s classification:

Es > b7 - Eg > Es - By — B3 — Fy — Fy

Nf from 7 to O via holomorphic decoupling of masses

4 1
reduction to four dimensions: R* % S

Sl - radius going to zero
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Sakai’s classification of g-Painleve’ :

AN
/!
Y - Y o EY 5 pivo 4l 5 A +4)0 5 A +4)D 4
¢ ¢ ¢ ¢
p{" - A S A4+ A AW
¢ ¢
Agl) — Agl) —

Backlund symmetries table: Weyl group of the affinization of flavour

symmetry group of the corresponding 5d/4d gauge theory.

SU (2) gauge theories on R* % S are geometrically engineered

by topological strings on local del Pezzo surfaces.

39



eg.upto Ny =14:

P

topological strings on local Hirzebruch and their blow-ups provide
conjectural tau-functions for g-Painleve’

for toric geometries non-perturbative topological string would provide
a candidate spectral determinant for those tau-functions.

it works for q-PIllI3 tau function [Bonelli-Grassi-A.T., to appear]
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Concluding remarks

gauge theory partition functions/BPS correlators and isomonodromy:
window on strongly coupled sectors of gauge and string theories

a new class of matrix models for magnetic phase

guantum statistical systems capturing self-dual Omega background

Some open problems

direct derivation of matrix model from gauge theory
including matter fields

breaking to N=1, confinement and condensates

non-perturbative string: frame dependence, relation to isomonodromy
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THANKS!!



