From dijet resonances to exotic signals at the LHC

Bogdan Dobrescu

Fermilab, Theoretical Physics Department

- Dijet resonances
- Cascade decays of a leptophobic Z^\prime
- Exotic decays of vectorlike quarks

February 25, 2017 – PITT-PACC Workshop

Run I and the start of Run II at the LHC have confirmed many aspects of the Standard Model, and measured:

 $M_h = 125.09 \pm 0.24$ GeV (ATLAS + CMS, 1503.07589).

The LHC is probing the laws of nature at the shortest distances accessible by humans so far.

We do not know what the full Run II will find ...

Any *s*-channel resonance at the LHC should also give a dijet signal: if a parton collission produce it, then it can also decay back to those partons.

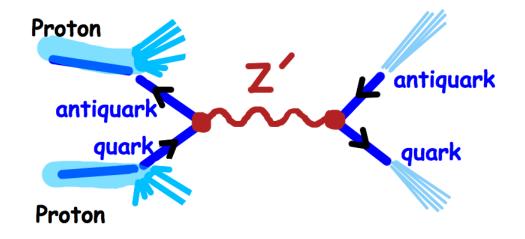
The resonance can be a particle of spin 0, 1/2, 1, ...

T. Han, I. Lewis, Z. Liu, 1010.4309:

initial state	J	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$ Q_e $	B
QQ	0	$\overline{f 3}\oplus{f 6}$	$1 \oplus 3$	$\frac{1}{3}$	$\frac{4}{3}, \frac{2}{3}, \frac{1}{3}$	$\frac{2}{3}$
QU	1	$\overline{f 3}\oplus{f 6}$	2	$\overline{3}$ $\overline{5}$ $\overline{6}$	$\frac{4}{3}, \frac{1}{3}$	$ \begin{array}{c} 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$
QD	1	$\overline{f 3}\oplus{f 6}$	2	$-\frac{1}{6}$	$\frac{2}{3}, \frac{1}{3}$	$\frac{2}{3}$
UU	0	$\overline{f 3}\oplus{f 6}$	1	$\begin{array}{r} 4\\ -\frac{2}{3}\\ -\frac{2}{3}\end{array}$	$\frac{\frac{4}{3}}{\frac{2}{3}}$	$\frac{2}{3}$
DD	0	$\overline{f 3}\oplus{f 6}$	1	$-\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$
UD	0	$\overline{f 3}\oplus{f 6}$	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$
QA	$\frac{1}{2}, \frac{3}{2}$	$3 \oplus \bar{6} \oplus 15$	2	$\frac{1}{6}$	$\frac{2}{3}, \frac{1}{3}$	$\frac{1}{3}$
UA	$\frac{1}{2}, \frac{3}{2}$	$3 \oplus \mathbf{ar{6}} \oplus 15$	1	$ \frac{\frac{1}{6}}{\frac{2}{3}} \frac{1}{3} $	$\frac{2}{3}$	$\frac{\frac{1}{3}}{\frac{1}{3}}$
DA	$\frac{1}{2}, \frac{3}{2}$	$3 \oplus \mathbf{ar{6}} \oplus 15$	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
AA	0,1,2	$1 \oplus 8 \oplus 8 \oplus 10 \oplus \bar{10} \oplus 27$	1	0	0	0
$Qar{Q}$	1	$1\oplus8$	$1 \oplus 3$	0	1, 0	0
$Qar{U}$	0	${f 1}\oplus {f 8}$	2	$-\frac{1}{2}$	1, 0	0
$Q\bar{D}$	0	${f 1}\oplus {f 8}$	2	$\frac{1}{2}$	1, 0	0
$Uar{U},\ Dar{D}$	1	${f 1}\oplus {f 8}$	1	0	0	0
$U\bar{D}$	1	${f 1}\oplus {f 8}$	1	1	1	0

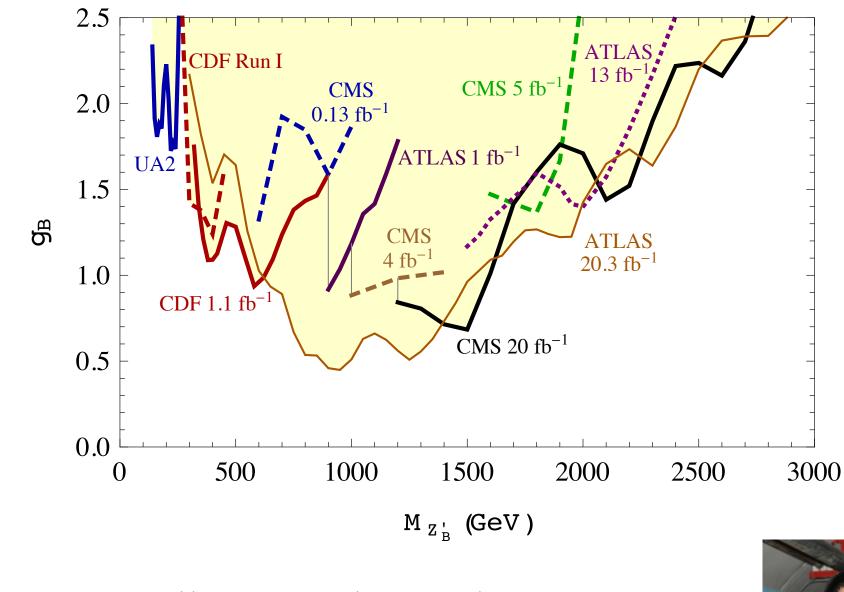
Hypothetical heavy particle of spin 1 and charge 0: Z' boson.

If Z' couples only to quarks ("leptophobic"), then it can be produced at hadron colliders and decays back to quark-antiquark pairs:



The two jets form a resonance that can show up above the background if $M_{Z^{\prime}}$ is large enough and its couplings are large.

"Baryonic" Z'_B : same coupling (g_B) to all six quark flavors.



 ${\cal L}_q = {g_B \over 2} Z'_\mu \sum_a \left({1 \over 3} \overline q_L \gamma^\mu q_L + {1 \over 3} \overline q_R \gamma^\mu q_R
ight)$

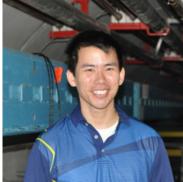
with Felix Yu: 1306.2629

"Baryonic" Z'_B : same coupling (g_B) to all six quark flavors.



$${\cal L}_q = {g_B \over 2} Z'_\mu \sum_q \left({1 \over 3} {\overline q}_L \gamma^\mu q_L + {1 \over 3} {\overline q}_R \gamma^\mu q_R
ight) ,$$

with Felix Yu: 1306.2629



Spin-1 fields are well behaved in the UV provided that they are bound states (not discussed here) or gauge bosons.

Z' is associated with a new gauge symmetry. Simple choice: $SU(3)_c \times SU(2)_W \times U(1)_Y \times U(1)_B$

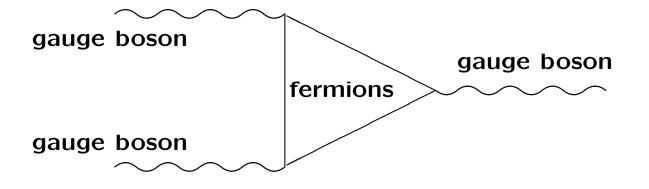
Theoretical requirements:

- $U(1)_B$ must be spontaneously broken. Simple choice: a new scalar field ϕ acquires a VEV.
- All $U(1)_B$ gauge anomalies must cancel.

Gauge anomaly cancellation

W. Bardeen, 1969, ...

Gauge symmetries may be broken by quantum effects. Cure: sums over fermion triangle diagrams must vanish.



Standard Model – anomalies cancel within each fermion generation: $\begin{bmatrix} SU(3)_c \end{bmatrix}^2 U(1)_Y \colon 2(1/6) + (-2/3) + (1/3) = 0$ $\begin{bmatrix} SU(2)_W \end{bmatrix}^2 U(1)_Y \colon 3(1/6) + (-1/2) = 0$ $\begin{bmatrix} U(1)_Y \end{bmatrix}^3 \colon 3 \begin{bmatrix} 2(1/6)^3 + (-2/3)^3 + (1/3)^3 \end{bmatrix} + 2(-1/2)^3 + (-1)^3 = 0$... $(u_L, d_L) \qquad u_R \qquad d_R \qquad (\nu_L, e_L) \qquad e_R$ Any leptophobic Z' that couples to quarks requires new charged fermions to cancel the anomalies (or to mix with the SM quarks - not discussed here).

4th generation of chiral fermions is highly constrained (almost ruled out) by ATLAS and CMS searches for new quarks and Higgs measurements

 \Rightarrow The new fermions ("anomalons") must be vectorlike with respect to $SU(3)_c \times SU(2)_W \times U(1)_Y$, and chiral with respect to the new gauge group.

New fields carrying $U(1)_B$ charge in a minimal model:

B.A. Dobrescu, C. Frugiuele, 1404.3947

field	spin	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	$U(1)_B$
$egin{array}{c} L_L \ L_R \end{array}$	1/2	1	2	-1/2	$egin{array}{c} -1 \ +2 \end{array}$
$egin{array}{c} E_L \ E_R \end{array}$	1/2	1	1	-1	$+2 \\ -1$
$egin{array}{c} N_L \ N_R \end{array}$	1/2	1	1	0	$+2 \\ -1$
ϕ	0	1	1	0	+3

There are two charged "anomalons", E and L^e , which can mix, and two neutral anomalons, N and L^{ν} , which can also mix.

$${\cal L}_{N{
m mass}} = - \left(\overline{N}_R \ , \ \overline{L}_R^{oldsymbol{
u}}
ight) \left(egin{array}{cc} y_N \left< \phi
ight> & y_{NL} v_H \ y_L \left< \phi
ight> &
ight) \left(egin{array}{cc} N_L \ L_L^{oldsymbol{
u}} \end{array}
ight) + {
m H.c.}$$

Left-handed neutral anomalons in the mass eigenstate basis:

$$\left(egin{array}{cc} N_{S_L} \ N_{D_L} \end{array}
ight) = \left(egin{array}{cc} c_N & -s_N \ s_N & c_N \end{array}
ight) \left(egin{array}{cc} N_L \ L_L^{
u} \end{array}
ight)$$

Right-handed ones:

$$\left(egin{array}{cc} N_{m{S}_R} \ N_{m{D}_R} \end{array}
ight) = \left(egin{array}{cc} c'_N & s'_N \ -s'_N & c'_N \end{array}
ight) \left(egin{array}{cc} N_R \ L_R^
u \end{array}
ight)$$

Small mass splitting between the charged and neutral physical states that are mostly part of the weak-doublet anomalon:

$$m_{E_D}-m_{N_D}\simeq \left(y_{EL}^2-y_{NL}^2
ight)rac{v_H^2}{2y_L\langle\phi
angle}+...$$

The decays of the four anomalon physical states depend on their mass ordering.

 $U(1)_B$ symmetry is spontaneously broken down to Z_3 .

The anomalons have Z_3 charge +1

 \Rightarrow lightest anomalon is stable (in the minimal model), can be a DM component if it is N_S .

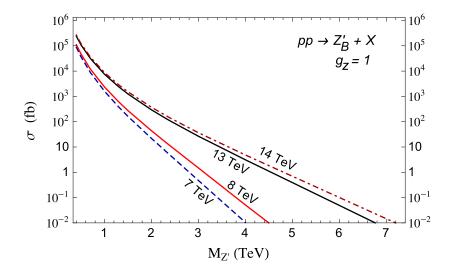
Consider the following ordering $m_{E_S} > m_{E_D} > m_{N_D} > m_{N_S}$.

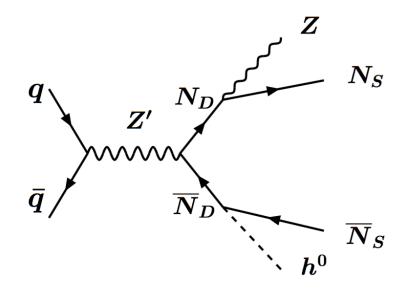
 N_D has 2 decay modes: $N_S h^0$ and $N_S Z$.

For
$$m_{N_D}-m_{N_S}\gg M_h$$
: $B(N_D o N_S\,h^0)pprox B(N_D o N_S\,Z)pprox rac{1}{2}$

assuming $M_arphi > m_{N_D} - m_{N_S}$

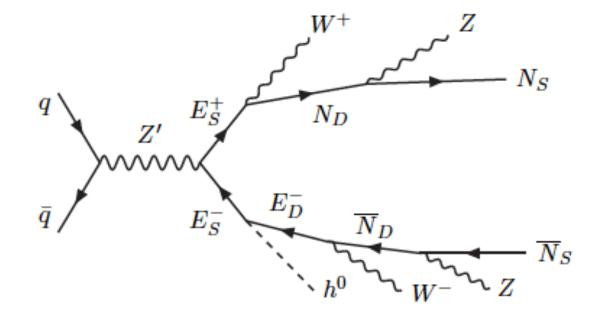
Cascade decays via anomalons: (1506.04435)





 E_D has 2 decay modes: $N_D W$ and $N_S W$.

 E_S has 3 main decay modes: $N_D W$, $E_D h^0$ and $E_D Z$.



Longer cascade decays:

$$Z'
ightarrow E_S^+ E_S^-
ightarrow E_D^+ E_D^- + 2(Z/h)
ightarrow N_D \bar{N}_D W W + 2(Z/h)$$

 $ightarrow N_S \bar{N}_S W^+ W^- + 4(Z/h)$

Other leptophobic Z' models:

Z^\prime_{R12} model

(1506.04435)

The $U(1)_{R12}$ -charged SM quarks and the fields beyond the SM:

field	spin	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	$U(1)_{R12}$
u_R , c_R	1 / 2	2	-1	+2/3	+1
d_R , s_R	1/2	3	1	-1	-1
E_L , E_L^\prime	1 / 2	1	1	1	+1 , -1
E_R , E_R^\prime	1/2	1	1	-1	0 , -2
N_R	1/2	1	1	0	+2
ϕ	0	1	1	0	+1

 Z^{\prime}_{R12} model predicts final states with missing energy,

$$Z'_{R12} o E^+_1 E^-_1 o \ W^+ ar{
u} \, W^-
u \ , \ \ W
u \, Z \ell \ , \ \ W
u \, h^0 \ell$$

or final states with one or more pairs of leptons,

$$Z'_{R12} o E_1^+ E_1^- o h^0 \ell \, Z \ell' \ , \ h^0 \ell \, h^0 \ell' \ , \ Z \ell \, Z \ell'$$

The leptons (ℓ and ℓ') may each be an e, a μ or a τ , with branching fractions that may violate lepton universality.

Exotic decays of vectorlike quarks

with Felix Yu, 1612.01909

A vectorlike quark χ that transforms as (3,1,+2/3) under $SU(3)_c \times SU(2)_W \times U(1)_Y$ would mix with the SM top quark.

 χ is predicted in composite Higgs models (Chivukula et al, hep-ph/9809470), little Higgs models (Arkani-Hamed et al, hep-ph/0206020), ...

Mass eigenstates: t and t'. Mixing $\sin \theta_L \equiv s_L$.

'Standard' decay widths of
$$t'$$
: $\Gamma(t' o W^+b) = rac{s_L^2 \ m_{t'}^3}{32\pi v_H^2} \left[1 + O\left(rac{M_W^4}{m_{t'}^4}
ight)
ight]$

$$\Gamma(t' o Zt) = rac{s_L^2 c_L^2 \ m_{t'}^3}{64 \pi v_H^2} \left[1 - rac{m_t^2}{m_{t'}^2} + O\left(rac{m_t^4}{m_{t'}^4}
ight)
ight]$$

$$\Gamma(t' \!
ightarrow ht) = rac{s_L^2 c_L^2 m_{t'}^3}{64 \pi v_H^2} \left[1 + 5 rac{m_t^2}{m_{t'}^2} + O\left(rac{m_t^4}{m_{t'}^4}
ight)
ight]$$

For $s_L \ll 1$, exotic decays of vectorlike quarks could dominate!

E.g., 4-fermion operator $(\overline{\chi}_R l_L^3) i \sigma_2(\overline{\tau}_R q_L^3) \Rightarrow t' \rightarrow \tau^+ \tau^- t$

Example of UV completion: scalar leptoquark ξ , which transforms as (3, 2, 7/6) under $SU(3)_c \times SU(2)_W \times U(1)_Y$

Yukawa interactions of ξ :

$$\lambda_{\chi}\,(\overline{\chi}_R l_L^3)\xi - i\lambda_q\,\xi^{\dagger}\sigma_2(\overline{ au}_R q_L^3) + \lambda_t\,\xi^{\dagger}(\overline{l}_L^3 t_R)$$

For $M_{\xi} > m_{t'}$, integrate ξ out:

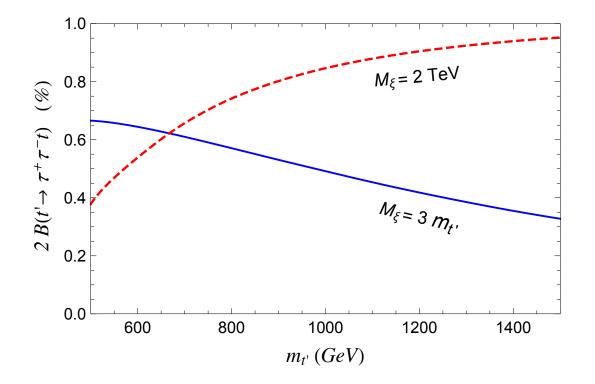
$$\frac{\lambda_t \lambda_{\chi}}{M_{\xi}^2} (\overline{\chi}_R l_L^3)^\top i \sigma_2 (\overline{\tau}_R q_L^3) - \frac{\lambda_t' \lambda_{\chi}}{M_{\xi}^2} (\overline{l}_L^3 t_R) (\overline{\chi}_R l_L^3)$$

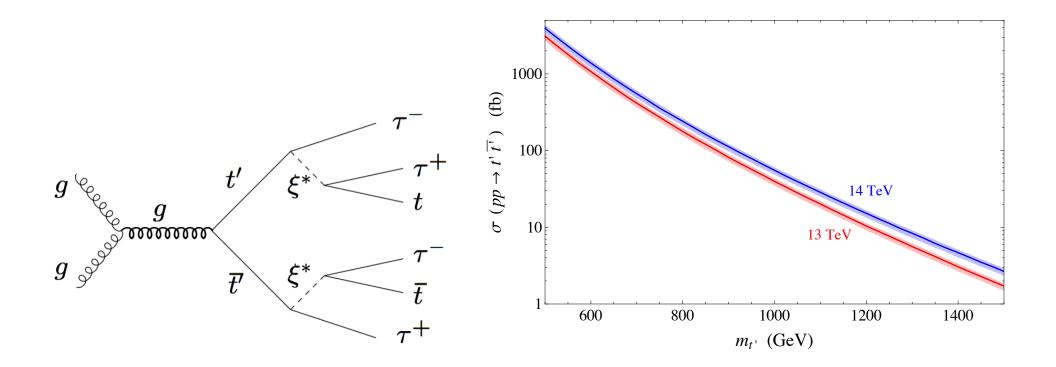
Exotic width:

$$\Gamma(t' o au^+ au^- t) = rac{\lambda_\chi^2 (\lambda_t^2 + \lambda_t'^2)}{6144 \pi^3 M_\xi^4} m_{t'}^5 \left[1 + O\left(rac{m_t^2}{m_{t'}^2}
ight)
ight].$$

 χ - u^3 mixing induced at one loop:

$$s_L = rac{y_ au\lambda_\chi\lambda_q}{8\pi^2}\ln(\Lambda/M_{m\xi}) \lesssim 6 imes 10^{-4}~~{
m for}~~\lambda_\chi\lambda_q \lesssim 1$$





Other LHC signatures: $tb\nu + 3\tau$, $t\bar{t}\tau^+\tau^-\nu\nu$, $tb\tau + 3\nu$ or $t\bar{t} + 4\nu$.

Similar final states with au replaced by μ or e ($t\bar{t} + 4\mu$, ...)

Other 4-fermion operators, e.g.,

$$rac{\kappa_\chi\kappa_t}{M_\zeta^2}(\overline{\chi}^c_R d^3_R)(\overline{d}^3_R u^{3c}_R)$$

lead to a $t\bar{t} + 4b$ final states.

with Zhen Liu, 1507.01923

 $W'
ightarrow H^+H^0, \ H^+A^0
ightarrow (tar{b})(tar{t})
ightarrow 3W + 4b$

ATLAS 1504.04605				
$\ell^+\ell^+$	+ (́> 3	(b) and	$\ell^+\ell^+bb$
	·	` <u> </u>	,	
Туре	N_j	N_b	$H_{\rm T}$ [GeV]	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]
e^+e^+	4	3	709	298
e^+e^+	6	3	800	137
$e^+\mu^+$	5	3	744	216
$e^+\mu^+$	4	3	888	155
$\mu^+ e^+$	3	3	1439	239
$\mu^-\mu^+\mu^-$	4	4	1072	176

Type	N_{j}	$H_{\rm T}~[{ m GeV}]$	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]
e^-e^-	3	807	171
e^+e^+	5	862	268
e^+e^+	5	868	113
μ^-e^-	6	1346	353
$e^+\mu^+$	5	810	106
$e^-\mu^-$	3	707	184
$e^-\mu^-$	2	706	174
$\mu^+ e^+$	8	882	150
$\mu^+ e^+$	4	860	112
$\mu^+\mu^+$	5	888	111
$\mu^-e^+e^+$	5	773	197
$\mu^-e^+e^+$	9	968	355

Excess explained for $M_{H^\pm} \approx M_{H^0} \approx M_{A^0} \approx 500-600~{\rm GeV}$ ($M_{W'} \approx 1.9-2~{\rm TeV}$)

Conclusions

• Run 2 of the LHC is exploring "Terra Incognita"

 \rightarrow huge potential for surprises, data driven environment ... Many additional searches (and novel techniques – jet substructure, quark vs. gluon jets, etc.) are necessary for probing new physics: vectorlike quarks, new gauge bosons, (pseudo)-scalars, ...

• Z' bosons may undergo cascade decays through anomalons, leading to final states with W, Z, Higgs bosons and E_T .

• Vectorlike fermions may have various exotic decays:

 $t^\prime
ightarrow t au^+ au^- \,, \, t \mu^+ \mu^- \,, \, t b \overline{b} \,, \,$

Bogdan Dobrescu (Fermilab)