

Designing triggers for BSM physics

February 24, 2017

Ben Carlson†

University of Pittsburgh

†bcarlson@cern.ch

Outline

Goal of this talk: solicit feedback on ideas for what we should include in the trigger to *dig deeper during the LHC run 2*

Trigger overview

- Why a trigger and how does it work
- What we actually trigger on
- Examples of triggers starting from physics
	- Examples from BSM Higgs: E_T ^{miss}, VBF, VBF + γ
	- Examples from diHiggs: multijet
	- Examples from heavy resonances: boosted jets

What I won't discuss in detail

 \cdot τ 's, electrons, muons, long-lived particles

Can we improve?

Physics→trigger signatures

Maximize coverage, minimize the not yet implemented!

Why a trigger?

Pileup

Pileup: multiple interactions per bunch crossing

- $\langle \mu \rangle$ In time pileup: interactions in one bunch crossing $\langle \mu \rangle$ in 2016: 20-40
	- Out of time pileup: interactions from previous bunch crossing

Interaction rate (effective number of pp collisions) ~ 1 GHz

- B.C. rate = 40 MHz, $\langle \mu \rangle = 25$,
- 40 MHz $x 25 = 1$ GHz

Effects of pileup must be mitigated in the trigger

ATLAS detector

L1 calorimeter trigger

Reference: [link,](http://iopscience.iop.org/article/10.1088/1748-0221/3/03/P03001/meta;jsessionid=133AACF448664921F9A12767D28A75EF.c5.iopscience.cld.iop.org) [link](http://iopscience.iop.org/article/10.1088/1748-0221/9/01/C01023/pdf)

Improvements to L1Calo

Upgrades after run 1 needed for hadronic triggers

- Improved pileup filters reduce impact of out of time pileup (left, backup)
- Pedestal correction removes dependence on position in bunch train and reduces exponential dependence (right)

L1 rate vs. ETmiss threshold

before pedestal correction Average L1_XE35 rate / bunch [Hz] Average L1_XE35 rate / bunch [Hz] 14 *ATLAS* Operations 12 2015 Data, \sqrt{s} = 13 TeV 50 ns pp Collision Data 10 without pedestal correction 8 with pedestal correction after pedestal correction 6 4 2 0 5 - 0.5 1 - 1.5 2 - 2.5 3 - 3.5 4 - 4.5 5
[10³⁰ cm² s⁻] - Instantaneous luminosity / bunch [10³⁰ cm² s *luminosity ~ pileup*

Rate / bunch vs. pileup

visible

 E Tmiss

**Threshold at L1 not equivalent to offline ETmiss*

[ATL-COM-DAQ-2015-150](https://cds.cern.ch/record/2053123) [ATL-COM-DAQ-2013-150](https://cds.cern.ch/record/1631717) invisible

What we trigger on $(L1)$ carlson 9

Breakdown of rate by physics

- L1 total: \sim 100 kHz
- Dominant fraction used by lepton triggers

Breakdown of contributions

ATLAS Trigger Operation

What we trigger on (HLT)

Breakdown of rate by physics

- HLT total: \sim 1 kHz
- E_T ^{miss} fraction substantial because of pileup dependence

HLT trigger rate vs. lumiblock

Significant pileup dependence

Breakdown of contributions (overlaps included)

ATLAS Trigger Operation

Reference, [link](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerOperationPublicResults)

Trigger thresholds (2016)

Most of the rate goes to inclusive triggers (backup for more complete table)

• Triggers targeting specific processes tend to be lower rate

BSM Higgs decays

Higgs could have significant fraction of decays to BSM

- Decay to invisible (left)
- Many final states where Higgs couples to a scalar *a* (right)

Why VBF?

Triggers for VBF H→inv

Carlson 14

Possible triggers

Jets: difficult to get out of L1 if only require two jets above p_T threshold *(until recently only counting of jets above threshold possible at L1)*

Rate ~ σ (QCD dijet) x L_{inst} ~ 10⁷pb x 10⁻²pb⁻¹s⁻¹ = 100 kHz

E_{Tmiss}: efficient for > 150 GeV, with L1 rate \sim 5kHz

Ermiss distribution

Carlson 15

• After (loose) selections, E_T ^{miss} distribution peaks at ~150 GeV

E_T ^{miss} trigger performance

E_Tmiss triggers

- Several algorithms available at HLT (backup), mht uses **calorimeter jets**
- E_T ^{miss}: offline threshold ~ 150 GeV, approximately L1 limited (left)
- Dramatic rate increase with $\lt \mu$, but are constantly improving (right)

Efficiency curves for ETmiss , reference events selected with lepton triggers

Reference, [link](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MissingEtTriggerPublicResults) $\overline{ATL-COM-DAQ-2017-001}$

Why a VBF trigger

$low-p_T$ jets

- low-p_T e, μ , τ
- Many soft particles
- Long-lived (?)

Trigger on the tag jets

Trigger on the jet kinematics at L1

- Need handle in addition to jet p_T
- m(jj) or kinematic quantities to reduce background

dijet mass: $m^2(jj) \sim p_T(j_1) \bullet p_T(j_2) \bullet e^{\Delta \eta(jj)}$ *L1 trigger variable*

Reducing the rate

Trigger events with m(ji) to reduce QCD

- Orders of magnitude background reduction to help with rate
- Also used in offline selections to remove QCD

(opposite hemi.) $m(i) > 150$ GeV E_T ^{miss} > 130 GeV

QCD background falls rapidly with m(jj)

Kinematics at L1

Additional flexibility at L1 possible

- Compute variables from truncated lists of inputs (jets, muons, $EM, +...$) Possible m(jj) trigger at L1
- Two lists of up to six jets, $p_T > 60(50)$ GeV (offline)
- Compute m(jj) for all combinations

Rate driven up by combinatorics and pileup in fwd region

Restrict $|\eta|$ ranges in m(j) combination

Reduce combinatorics

To reduce the rate, restrict |η| for combinations

- \sim 50% of signal events have central-forward combination
- Significant rate reduction makes this a plausible strategy

Fraction of events split into Jet | η *| distribution for VBF tag jets combinations of central/forward (central defined as |η| < 3.1)*

VBF heavy scalar

Physics in the forward-forward category?

- Jets from a heavy scalar are even more forward
- Significant fraction of these events will be lost by central-forward requirement

Clean events with a photon (initially implemented for $H\rightarrow bb$, but generally useful)

- 60% L1 bandwidth already goes to EM
- 2016 trigger seeded from EM item at L1: γ p_T > 22 GeV, m(jj) > 700 GeV
- *• Future trigger will require L1 m(jj) as well*

ATLAS-CONF-2016-063

Dihiggs

Carlson 23

All hadronic X→HH, m4j distribution

Proposed trigger strategy for 4b similar between run 2 and HL-LHC, but contingent on trigger upgrades

- Run 2 analysis uses combination of several jet triggers
- Most important trigger: multijet
- *• Many users of multi jet triggers*

Multijet triggers

Lowest unprescaled triggers: 4J15, 3J50

- Efficiency curves for L1 multijet triggers (left)
- Efficiency curve for HLT 5-jet trigger (right)
- Approximately L1 limited

ATL-COM-DAQ-2016-130 [\(link](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetTriggerPublicResults#2016_pp_Data))

Large-R single jet

Boosted jets reconstruct resonances, $V' \rightarrow VH$

- Trigger: single $R = 1.0$ jet, $p_T > 420$ GeV, m_{VH} distribution (right)
- Trigger threshold can be improved using jet mass requirement (left)

Distribution of mVH formed from two large-R jets

[ATL-COM-DAQ-2017-007](https://cds.cern.ch/record/2244774/)

[ATLAS-CONF-2016-083](https://cds.cern.ch/record/2206276/files/ATLAS-CONF-2016-083.pdf)

Large-R dijet

Jet mass requirement reduces threshold

- L1 seed fully efficient by 220 GeV (offline): HLT limited
- However, L1 inefficient for >2 sub-jets (see right, backup)
- Run 3: global feature extractor to target this, but opportunity also in run 2

Carlson 26

[ATL-COM-DAQ-2017-007](https://cds.cern.ch/record/2244774/) [ATL-COM-DAQ-2014-087](https://cds.cern.ch/record/1749167)

Conclusions

The ATLAS trigger system

- Remarkable system with a great deal of flexibility
- Many improvements implemented already

Examples of triggers motivated by physics use cases

- E_T miss
- VBF
- Multijet triggers
- Boosted jet triggers

Backup 28

Timeline for upgrades

- *• 2019: significant upgrades in trigger readout electronics and L1 trigger electronics*
- *• 2024: upgrades to tracker, calorimeters, muon system and trigger*

Needed to cope with increasing pileup & add new features

Reference: [link,](https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm) [link](https://project-hl-lhc-industry.web.cern.ch/content/project-schedule)

Trigger upgrade overview

^{}muons not shown*

Digitize trigger readout path and increase physics capability

- Global feature extractor [gFEX]: no direct analog in existing system
- Run 2 system also will operate during commissioning of run 3 system

[ATLAS-TDR-023](https://cds.cern.ch/record/1602235?ln=en)

Detector upgrade

Calorimeters

Primary focus of upgrade physics on performance of phase II

Trigger for $H\rightarrow \tau\tau$

Unsustainable rates τ rates reduced with $\Delta R(\tau,\tau)$ & jet requirement

- Factor ~5 rate reduction (below), with negligible signal loss, targeting $H\rightarrow \tau\tau$ (backup)
- Full requirement: $p_T \tau \tau > 20$ (12) GeV, $\Delta R(\tau, \tau) < 2.9$, p_T jet > 25 GeV [offline: $p_T \tau \tau$ 40 (30) GeV, 60 GeV jet]

 [ATL-COM-DAQ-2017-001](https://cds.cern.ch/record/2242069/files/ATL-DAQ-PUB-2017-001.pdf)

H_T trigger

H_T : scalar sum of jet p_T (central)

- L1 fully efficient by $H_T = 400$ GeV (offline) with reasonable rate (left)
- HLT fully efficient by $H_T = 1$ TeV (offline), could be updated with new L1 seed

 [ATL-COM-DAQ-2017-001](https://cds.cern.ch/record/2242069/files/ATL-DAQ-PUB-2017-001.pdf)

Efficiency (HLT) for ht trigger. Note, seeded by L1_J100, as L1_HT was not yet available

PDATE ME!!!!

Profile of $\leq \mu$ vs. time (2016)

Derived from "Performance of the ATLAS Trigger System in 2015" arXiv: [1611.09661](https://arxiv.org/pdf/1611.09661v1.pdf)

Autocorrelation filter

Apply several techniques to mitigate pileup

- *Pedestal correction* Removes bunch train dependence
- *Autocorrelation filter* Removes sensitivity to previous bunches

Negative coefficients reduce impact of out of time pileup

Carlson 37

Dealing with pileup

Apply several techniques to mitigate *pileup*

- *Pedestal correction* Removes bunch train dependence
- *Autocorrelation filter* Removes sensitivity to previous bunches *(out of time pileup)*

multiple pp collisions per bunch crossing

- Sum over 24 bunch crossings is 0: cancels out of time pileup
- Leading edge of pulse tends to increase trigger rate for first few bunches
- Pedestal correction removes this artifact
- Also corrects for differences in luminosity for each bunch

Pedestal correction: ETmiss

invisible

E_T^{miss} trigger requires a pedestal correction

- Rate significantly higher for first few bunches
- Remove spike at start of bunch trains (left)
- Pedestal correction reduces exponential dependence on pileup (right)

L1 rate vs. position in bunch train: **Rate rises at start of train**

Rate / bunch vs. pileup

visible

 E_T miss

[ATL-COM-DAQ-2015-150](https://cds.cern.ch/record/2053123)

Impact of pileup mitigation

Apply several techniques to mitigate pileup

- *Pedestal correction* Removes bunch train dependence
- *Autocorrelation filter* Removes sensitivity to previous bunches

separate signal from pileup noise by deweighting previous bunches

**Threshold at L1 not equivalent to offline ETmiss*

[ATL-COM-DAQ-2013-150](https://cds.cern.ch/record/1631717)

- Matched filter: 2011 settings
	- Matched filter: 2012 settings
- Autocorrelation filter
	- Autocorrelation filter + pedestal correction
- Autocorrelation and pedestal correction allow for *x*10 rate reduction

more on autocorrelation filter, see [Wikipedia](https://en.wikipedia.org/wiki/Autocorrelation)!

Trigger menu (2015)

Not a complete list..

From "Performance of the ATLAS Trigger System in 2015"

arXiv: [1611.09661](https://arxiv.org/pdf/1611.09661v1.pdf)

Trigger menu (2016)

Not a complete list..

 [ATL-COM-DAQ-2017-001](https://cds.cern.ch/record/2242069/files/ATL-DAQ-PUB-2017-001.pdf)

Comparison of E_T ^{miss}

Comparison of efficiency for various ETmiss algorithms

E_T ^{miss} at $HLT:$ methods C arlson 43

E_T ^{miss} algorithms

- *mht* Vector sum of pileup-corrected jets with E_T > 7 GeV *(threshold at uncalibrated*) *scale)*
- *cell* Calorimeter cells with cut on energy significance *s (s > 2, –5 < s< –2)*
- *topocluster* Start with seed, add neighbors, then add their neighbors
- *pueta* p.u. sub. from density in η rings
- *pufit* p.u. sub. by χ^2 fit*

*Forces no E_T ^{miss} from towers \leq threshold

Trigger cross section

Rates

- Conceptually, linear rate v. $\lt \mu$ means "no pileup dependence," see left cartoon
- Rates show non-linear $\lt\mu$ dependence, see right plot

Forming topoclusters 45 arXiv: [1603.02934](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2014-07/)

- Topoclusters: inputs for jets and E_T^{miss}
- **• Same as offline: made for every event**

Iterative algorithm: 4/2/0

- 1. Seed: $|E| > 4\sigma$
- Add neighbors: $|E| > 2\sigma$
- 3. Add cells on perimeter: $|E| > 0\sigma$
- *: noise from electronics + pileup*

see event <u>[display](#page-45-0)</u>

Corrects*: calorimeter response, losses in clustering, dead material*

Forming topoclusters arXiv: <u>1603.02934</u>

- Sequential algorithm to combine cells
- Projection in one layer of FCAL

 σ defined by *electronics + pileup* noise

$Seed$ + neighbors + + neighbors

Illustration of 4/2/0 scheme (can change thresholds)

L1 jet trigger efficiency

Turn-on curve for jet trigger

ATL-COM-DAQ-2016-087 [\(link](https://cds.cern.ch/record/2200390))

L1 forward jet trigger efficiency

Turn-on curve for jet trigger

ATL-COM-DAQ-2016-087 [\(link](https://cds.cern.ch/record/2200390))

gFEX architecture

Global feature extractor: single board targeting boosted jets

Details

- Detector split into three FPGAs
- Jet algorithm: like a cone jet
- Global variables: H_T , E_T ^{miss}

[ATL-DAQ-PROC-2015-059](https://cds.cern.ch/record/2104248/files/ATL-DAQ-PROC-2015-059.pdf)

Large radius jets

Global feature extractor: single board targeting boosted jets

- Event by event pileup subtraction: allow for lower rates at high pileup (left)
- Larger radius jets to trigger efficiently on boosted jets (right)

[ATL-COM-DAQ-2014-087](https://cds.cern.ch/record/1749167)

L1Calo EM algorithms

- Trigger towers (TT): $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- EM RoIs constructed using a sliding window algorithm over 4x4 TT

- Each EM RoI characterized by:
	- Core ET
	- EM **isolation**
		- **Ring:** E_T in EM layer, 1 TT ring around core
	- Hadronic **isolation**
		- **Core**: E_T in hadronic layer behind core
		- **Ring**: E_T in hadronic layer, 1 TT ring around core

Improved run 3 resolution

High granularity to improve resolution

- *• Trigger tower resolution: 0.1 x 0.1*
- *• Supercell resolution 0.025 x 0.1 (depending on layer)*

[ATLAS-TDR-022](https://cds.cern.ch/record/1602230/)

Compressed SUSY

• Sensitivity by **VBF invisible**?

Direct EW SUSY: charged

• Currently sensitive for the case where leptons missed?

Decay modes

Branching fraction

p_T distribution of VBF jets

$\Delta R(\tau,\tau)$ efficiency

Impact of additional L1 requirements

- Excellent signal efficiency after offline requirements for $H\rightarrow \tau\tau$ (left)
- L1 signal efficiency for $\Delta R(\tau,\tau)$ is fairly sharp (right)

Trilinear self-coupling limits

$HH\rightarrow 4b$

Run 2 extrapolation to 3ab-1

- Multijet background difficult to estimate (used data)
- Investigate various assumptions on background systematics and jet p_T threshold

ATL-PHYS-PUB-2016-024 [\(link](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2016-024/))

$HH\rightarrow bb(\gamma\gamma)$

strip [TDR](https://cds.cern.ch/record/2239048/)

Extrapolation to 3ab⁻¹ performed using smearing functions [\(link](https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/UpgradePerformanceFunctions))

- New photon ID optimized for $\langle \mu \rangle = 200$
- Latest b-tagging function and pileup jet contribution used
- Main background, non-resonant QCD with at least one γ [bb $\gamma\gamma$] (left)
- [so far] most sensitive HH channel (right)

ATL-PHYS-PUB-2017-001 [\(link](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-001/))