

Designing triggers for BSM physics

February 24, 2017

Ben Carlson[†]

University of Pittsburgh

†<u>bcarlson@cern.ch</u>

Outline

Goal of this talk: solicit feedback on ideas for what we should include in the trigger to *dig deeper during the LHC run 2*

Trigger overview

- Why a trigger and how does it work
- What we actually trigger on
- Examples of triggers starting from physics
 - Examples from BSM Higgs: E_T^{miss} , VBF, VBF + γ
 - Examples from diHiggs: multijet
 - Examples from heavy resonances: boosted jets

What I won't discuss in detail

• τ 's, electrons, muons, long-lived particles

Can we improve?

Physics→trigger signatures

Maximize coverage, minimize the not yet implemented!

Why a trigger?

Pileup

Pileup: multiple interactions per bunch crossing

- In time pileup: interactions in one bunch crossing
- Out of time pileup: interactions from previous bunch crossing

Interaction rate (effective number of pp collisions) $\sim 1 \text{ GHz}$

 $<\mu>$ in 2016: 20-40

- B.C. rate = 40 MHz, $<\mu>$ = 25,
- 40 MHz x 25 = 1 GHz

 $<\mu>$

Effects of pileup must be mitigated in the trigger

ATLAS detector

Carlson 6

L1 calorimeter trigger

Reference: <u>link</u>, <u>link</u>

Improvements to L1Calo

Upgrades after run 1 needed for hadronic triggers

- Improved pileup filters reduce impact of out of time pileup (left, backup)
- Pedestal correction removes dependence on position in bunch train and reduces exponential dependence (right)

Rate / bunch vs. pileup

visible

*Threshold at L1 not equivalent to offline E_T^{miss}

<u>ATL-COM-DAQ-2015-150</u> <u>ATL-COM-DAQ-2013-150</u>

invisible

 E_T^{miss}

Carlson 8

What we trigger on (L1)

Breakdown of rate by physics

- L1 total: ~100 kHz
- Dominant fraction used by lepton triggers

Breakdown of contributions

What we trigger on (HLT)

Breakdown of rate by physics

HLT trigger rate vs. lumiblock

- HLT total: ~1 kHz
- E_T^{miss} fraction substantial because of pileup dependence

Significant pileup dependence

Breakdown of contributions (overlaps included)

Reference, link

Trigger thresholds (2016)

Carlson 11

Most of the rate goes to inclusive triggers (backup for more complete table)

• Triggers targeting specific processes tend to be lower rate

BSM Higgs decays

Higgs could have significant fraction of decays to BSM

- Decay to invisible (left)
- Many final states where Higgs couples to a scalar *a* (right)

Why VBF?

Triggers for VBF H→inv

Carlson 14

Possible triggers

• Jets: difficult to get out of L1 if only require two jets above p_T threshold *(until recently only counting of jets above threshold possible at L1)*

Rate ~ σ (QCD dijet) x L_{inst} ~ 10⁷pb x 10⁻²pb⁻¹s⁻¹ = 100 kHz

• E_{Tmiss} : efficient for > 150 GeV, with L1 rate ~5kHz

E_T^{miss} distribution

Carlson 15

• After (loose) selections, E_T^{miss} distribution peaks at ~150 GeV

E_T^{miss} trigger performance

E_T^{miss} triggers

- Several algorithms available at HLT (backup), mht uses calorimeter jets
- E_T^{miss} : offline threshold ~ 150 GeV, approximately L1 limited (left)
- Dramatic rate increase with $\langle \mu \rangle$, but are constantly improving (right)

Efficiency curves for E_T^{miss} , reference events selected with lepton triggers

ATL-COM-DAQ-2017-001

Reference, <u>link</u>

Why a VBF trigger

low-p_T jets

- low-p_T e, μ , τ
- Many soft particles
- Long-lived (?)

Trigger on the tag jets

Trigger on the jet kinematics at L1

- Need handle in addition to jet p_T
- m(jj) or kinematic quantities to reduce background

dijet mass: $m^{2}(jj) \sim p_{T}(j_{1}) \bullet p_{T}(j_{2}) \bullet e^{\Delta \eta(jj)}$ - L1 trigger variable

Reducing the rate

Trigger events with m(jj) to reduce QCD

- Orders of magnitude background reduction to help with rate
- Also used in offline selections to remove QCD

 $p_T > 50 (50) \text{ GeV}$ (opposite hemi.) m(jj) > 150 GeV $E_T^{miss} > 130 \text{ GeV}$

QCD background falls rapidly with m(jj)

Kinematics at L1

Additional flexibility at L1 possible

- Compute variables from truncated lists of inputs (jets, muons, EM, +...) Possible m(jj) trigger at L1
- Two lists of up to six jets, $p_T > 60(50)$ GeV (offline)
- Compute m(jj) for all combinations

Rate driven up by combinatorics and pileup in fwd region

• Restrict $|\eta|$ ranges in m(jj) combination

Reduce combinatorics

To reduce the rate, restrict $|\eta|$ for combinations

- $\sim 50\%$ of signal events have central-forward combination
- Significant rate reduction makes this a plausible strategy

Fraction of events split into combinations of central/forward (central defined as $|\eta| < 3.1$)

leading	subleading	Fraction [%]		
Central	Central	25		
Forward	Central	18		
→ Central	Forward	46		
Forward	Forward	11		
	Total	100		
Includes selections $p_T > 75 (50) \text{ GeV}$ $m(jj) > 1 \text{ TeV}, \Delta \eta > 4.8$				

Jet $|\eta|$ *distribution for VBF tag jets*

VBF heavy scalar

Physics in the forward-forward category?

- Jets from a heavy scalar are even more forward
- Significant fraction of these events will be lost by central-forward requirement

Clean events with a photon (initially implemented for $H \rightarrow bb$, but generally useful)

- 60% L1 bandwidth already goes to EM
- 2016 trigger seeded from EM item at L1: $\gamma p_T > 22 \text{ GeV}, m(jj) > 700 \text{ GeV}$
- Future trigger will require L1 m(jj) as well

ATLAS-CONF-2016-063

Dihiggs

All hadronic $X \rightarrow HH$, m4j distribution

Proposed trigger strategy for 4b similar between run 2 and HL-LHC, but contingent on trigger upgrades

- Run 2 analysis uses combination of several jet triggers
- Most important trigger: multijet
- Many users of multi jet triggers

Multijet triggers

Lowest unprescaled triggers: 4J15, 3J50

- Efficiency curves for L1 multijet triggers (left)
- Efficiency curve for HLT 5-jet trigger (right)
- Approximately L1 limited

ATL-COM-DAQ-2016-130 (<u>link</u>)

Large-R single jet

Boosted jets reconstruct resonances, V' \rightarrow VH

- Trigger: single R = 1.0 jet, $p_T > 420$ GeV, m_{VH} distribution (right)
- Trigger threshold can be improved using jet mass requirement (left)

Distribution of m_{VH} formed from two large-R jets

ATL-COM-DAQ-2017-007

ATLAS-CONF-2016-083

Large-R dijet

Jet mass requirement reduces threshold

- L1 seed fully efficient by 220 GeV (offline): HLT limited
- However, L1 inefficient for >2 sub-jets (see right, backup)
- Run 3: global feature extractor to target this, but opportunity also in run 2

ATL-COM-DAQ-2014-087

ATL-COM-DAQ-2017-007

Conclusions

The ATLAS trigger system

- Remarkable system with a great deal of flexibility
- Many improvements implemented already

Examples of triggers motivated by physics use cases

- E_T^{miss}
- VBF
- Multijet triggers
- Boosted jet triggers

Backup

Timeline for upgrades

- 2019: significant upgrades in trigger readout electronics and L1 trigger electronics
- 2024: upgrades to tracker, calorimeters, muon system and trigger

Needed to cope with increasing pileup & add new features

Reference: link, link

Trigger upgrade overview

^{*}muons not shown

Digitize trigger readout path and increase physics capability

- Global feature extractor [gFEX]: no direct analog in existing system
- Run 2 system also will operate during commissioning of run 3 system

ATLAS-TDR-023

Detector upgrade

Calorimeters

Primary focus of upgrade physics on performance of phase II

Trigger for $H \rightarrow \tau \tau$

Unsustainable rates $\boldsymbol{\tau}$ rates reduced with $\Delta R(\boldsymbol{\tau},\boldsymbol{\tau})$ & jet requirement

- Factor ~5 rate reduction (below), with negligible signal loss, targeting $H \rightarrow \tau \tau$ (backup)
- Full requirement: $p_T \tau \tau > 20 (12) \text{ GeV}, \Delta R(\tau, \tau) < 2.9, p_T \text{ jet} > 25 \text{ GeV}$ [offline: $p_T \tau \tau 40 (30) \text{ GeV}, 60 \text{ GeV jet}$]

ATL-COM-DAQ-2017-001

H_T trigger

H_T: scalar sum of jet p_T (central)

- L1 fully efficient by $H_T = 400$ GeV (offline) with reasonable rate (left)
- HLT fully efficient by $H_T = 1$ TeV (offline), could be updated with new L1 seed

Efficiency (HLT) for ht trigger. Note, seeded by L1_J100, as L1_HT was not yet available

UPDATE ME!!!!

ATL-COM-DAQ-2017-001

Profile of $<\mu >$ vs. time (2016)

Derived from "Performance of the ATLAS Trigger System in 2015" arXiv: <u>1611.09661</u>

Autocorrelation filter

Apply several techniques to mitigate pileup

- *Pedestal correction* Removes bunch train dependence
- Autocorrelation filter Removes sensitivity to previous bunches

• Negative coefficients reduce impact of out of time pileup

Carlson 37

Dealing with pileup

Apply several techniques to mitigate *pileup*

- *Pedestal correction* Removes bunch train dependence
- Autocorrelation filter Removes sensitivity to previous bunches (out of time pileup)

multiple pp collisions per bunch crossing

- Sum over 24 bunch crossings is 0: cancels out of time pileup
- Leading edge of pulse tends to increase trigger rate for first few bunches
- Pedestal correction removes this artifact
- Also corrects for differences in luminosity for each bunch

Pedestal correction: E_T^{miss}

E_T^{miss} trigger requires a pedestal correction

- Rate significantly higher for first few bunches
- Remove spike at start of bunch trains (left)
- Pedestal correction reduces exponential dependence on pileup (right)

L1 rate vs. position in bunch train: Rate rises at start of train

 $\sqrt{s} = 13 \text{ TeV 50ns pp Collisions Data}$ Run 271595Pedestal Correction disabled Rate spike at start of train removed with pedestal correction

<figure><figure>

Rate / bunch vs. pileup

ET^{miss}

visible

ATL-COM-DAQ-2015-150

start of bunch train

Per-bunch rate of L1_XE35 [Hz]

Impact of pileup mitigation

Apply several techniques to mitigate pileup

- *Pedestal correction* Removes bunch train dependence
- Autocorrelation filter Removes sensitivity to previous bunches

separate signal from pileup noise by deweighting previous bunches

*Threshold at L1 not equivalent to offline E_T^{miss}

ATL-COM-DAQ-2013-150

- Matched filter: 2011 settings
 - Matched filter: 2012 settings
- Autocorrelation filter
 - Autocorrelation filter + pedestal correction
- Autocorrelation and pedestal correction allow for *x*10 rate reduction

more on autocorrelation filter, see <u>Wikipedia</u>!

Trigger menu (2015)

Not a complete list..

Year	2012		2015		
\sqrt{s}	8 TeV		13 TeV		
Peak luminosity	$7.7 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$		$5.0 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$		
	$p_{\rm T}$ threshold [GeV], criteria				
Category	L1	HLT	L1	HLT	Offline
Single electron	18	24i	20	24	25
Single muon	15	24i	15	20i	21
Single photon	20	120	20	120	125
Single tau	40	115	60	80	90
Single jet	75	360	100	360	400
Single b-jet	n/a	n/a	100	225	235
$E_{\mathrm{T}}^{\mathrm{miss}}$	40	80	50	70	180
Dielectron	2×10	2×12,loose	2×10	2×12,loose	15
Dimuon	2×10	2×13	2×10	2×10	11
Electron, muon	10, 6	12, 8	15, 10	17, 14	19, 15
Diphoton	16, 12	35, 25	2×15	35, 25	40, 30
Ditau	15i, 11i	27, 18	20i, 12i	35, 25	40, 30
Tau, electron	11i, 14	28i, 18	12i(+jets), 15	25, 17i	30, 19
Tau, muon	8, 10	20, 15	12i(+jets), 10	25, 14	30, 15
Tau, $E_{\rm T}^{\rm miss}$	20, 35	38, 40	20, 45(+jets)	35, 70	40, 180
Four jets	4×15	4×80	3×40	4×85	95
Six jets	4×15	6×45	4×15	6×45	55
Two <i>b</i> -jets	75	35b,145b	100	50b,150b	60
Four(Two) (b-)jets	4×15	2×35b, 2×35	3×25	2×35b, 2×35	45
B-physics (Dimuon)	6, 4	6, 4	6, 4	6, 4	6, 4

From "Performance of the ATLAS Trigger System in 2015"

arXiv: 1611.09661

Trigger menu (2016)

Not a complete list..

ATL-COM-DAQ-2017-001

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Typical offline selection	Trigger Selection		Level-1 Peak	HLT Peak
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Trigger		Level-1 (GeV)	HLT (GeV)	Rate (kHz)	Rate (Hz)
$ \begin{split} & \mbox{Single leptons} \\ & \mbox{Single isolated } \mu, p_T > 27 {\rm GeV} & 20 & 26 (i) & 13 & 133 \\ & \mbox{Single } e, p_T > 52 {\rm GeV} & 22 (i) & 26 (i) & 20 & 133 \\ & \mbox{Single } e, p_T > 52 {\rm GeV} & 22 (i) & 60 & 20 & 13 \\ & \mbox{Single } e, p_T > 170 {\rm GeV} & 22 (i) & 60 & 160 & 5 & 15 \\ & \mbox{Single } r, p_T > 170 {\rm GeV} & 20 & 22 (k) & 21 (k) & 15 & 21 (k) \\ & \mbox{Two } \mu's, p_T > 23, 9 {\rm GeV} & 20 & 22 (k) & 21 (k) & 21 (k) & 21 (k) \\ & \mbox{Two } \mu's, p_T > 23, 9 {\rm GeV} & 20 & 22 (k) & 21 (k) & 21 $			Level-1 (Gev)		$L = 1.2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	
		Single isolated μ , $p_T > 27$ GeV	20	26 (i)	13	133
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Single leptons	Single isolated tight $e, p_T > 27 \text{ GeV}$	22 (i)	26 (i)	20	133
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Single μ , $p_{\rm T} > 52 \text{ GeV}$	20	50	13	48
		Single $e, p_T > 61 \text{ GeV}$	22 (i)	60	20	13
$ \begin{split} & \mbox{Two } \mu_{s} \mbox{ cach } p_{T} > 15 \ {\rm GeV} & 2 \times 10 & 2 \times 14 & 1.5 & 21 \\ \hline {\rm Two } \mu_{s} \ p_{T} > 23,9 \ {\rm GeV} & 20 & 22,8 & 13 & 30 \\ \hline {\rm Two } \log e^{s} \ co e^{s} \ p_{T} > 18 \ {\rm GeV} & 2 \times 15 & 2 \times 17 & 8 & 7 \\ \hline {\rm One } e^{s} \ co e^{s} \ p_{T} > 18, 15 \ {\rm GeV} & 12 \ (1) \ (1) & 7, 24 & 13 & 2 \\ \hline {\rm One } \log e^{s} \ s, end \ p_{T} > 18, 15 \ {\rm GeV} & 15, 10 & 17, 14 & 1.5 & 2.6 \\ \hline {\rm Two } r_{s} \ p_{T} > 40, 30 \ {\rm GeV} & 20 \ (1), 12 \ (1)$		Single τ , $p_{\rm T} > 170 {\rm GeV}$	60	160	5	15
		Two μ 's, each $p_T > 15 \text{ GeV}$	2×10	2 × 14	1.5	21
$ \begin{split} & \mbox{Two leptons} \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Two μ 's, $p_{\rm T} > 23,9 {\rm GeV}$	20	22, 8	13	30
$ \begin{split} \mbox{Two leptons} & \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Two loose e's, each $p_T > 18 \text{ GeV}$	2×15	2 × 17	8	7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Two leptons	One <i>e</i> & one μ , $p_T > 8,25$ GeV	20 (µ)	7, 24	13	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Two reptons	One loose e & one μ , $p_T > 18$, 15 GeV	15, 10	17, 14	1.5	2.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Two τ 's, $p_{\rm T} > 40, 30 {\rm GeV}$	20 (i), 12 (i) (+jets)	35, 25	6	35
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		One τ & one isolated μ , $p_T > 30, 15 \text{ GeV}$	12 (i), 10 (+jets)	25, 14 (i)	1.5	7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		One τ & one isolated $e, p_T > 30, 18 \text{ GeV}$	12 (i), 15 (i) (+jets)	25, 17 (i)	3	9
$ Three μ^*s, each $p_T > 7$ GeV 3 \times 6 3 \times 6 0.1 3 \\ Three μ^*s, $p_T > 21$, 2 \times 5$ GeV 20 20$, 2 \times 4 13 4 \\ Two μ^*s, $p_T > 21$, 2 \times 5$ GeV 2 \times 10$ (μ^*s) 2 \times 10$, 12 1.5 0.2 \\ Two loose e, $p_T > 2 \times 11$, 13$ GeV 2 \times 10$ (μ^*s) 2 \times 10$, 12 1.5 0.2 \\ Two loose e, $p_T > 145$ GeV 2 \times 8$, 10 2 \times 12$, 10 1.1 0.1 \\ One photon 0 loose $p_T > 145$ GeV 22$ (i) 140 20 30 \\ Two ight γ^*s, $p_T > 40$, 30$ GeV 2 \times 15 35$, 25 8 40 \\ Two tight γ^*s, $p_T > 27$, 27$ GeV 2 \times 15 2 \times 22 8 16 \\ $		Three loose <i>e</i> 's, $p_{\rm T} > 18, 11, 11 \text{ GeV}$	15, 2 × 8	$17, 2 \times 10$	15	< 0.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Three μ 's, each $p_T > 7 \text{ GeV}$	3×6	3×6	0.1	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Three leptons	Three μ 's, $p_T > 21, 2 \times 5$ GeV	20	$20, 2 \times 4$	13	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Three leptons	Two μ 's & one loose $e, p_T > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 (\mu's)$	2 × 10, 12	1.5	0.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Two loose e's & one μ , $p_T > 2 \times 13$, 11 GeV	2 × 8, 10	$2 \times 12, 10$	1.1	0.1
	One photon	One loose γ , $p_T > 145 \text{ GeV}$	22 (i)	140	20	30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	True also tene	Two loose γ 's, $p_T > 40, 30 \text{ GeV}$	2×15	35, 25	8	40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Two photons	Two tight γ 's, $p_{\rm T} > 27, 27$ GeV	2×15	2 × 22	8	16
	Single jet	Jet $(R = 0.4)$, $p_T > 420 \text{ GeV}$	100	380	3	38
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Jet $(R = 1.0), p_T > 460 \text{ GeV}$	100	420	3	35
Multi-jetsFour jets, each $p_T > 110 \text{ GeV}$ 3×50 4×100 0.4 18 Multi-jetsFive jets, each $p_T > 80 \text{ GeV}$ 4×15 5×70 3.5 14 Six jets, each $p_T > 70 \text{ GeV}$ 4×15 6×60 3.5 5 Six jets, each $p_T > 55 \text{ GeV}, \eta < 2.4$ 4×15 6×45 3.5 18 b -jetsOne $b (\epsilon = 60\%), p_T > 235 \text{ GeV}$ 100 225 3 24 Two b 's ($\epsilon = 60\%$), $p_T > 160, 60 \text{ GeV}$ 100 $150, 50$ 3 20 One $b (\epsilon = 70\%)$ & three jets, each $p_T > 85 \text{ GeV}$ 4×15 4×75 3.5 19 Two $b (\epsilon = 60\%)$ & one jet, $p_T > 65, 65, 110 \text{ GeV}$ $2 \times 20, 75$ $2 \times 55, 100$ 2.7 25 Two $b (\epsilon = 60\%)$ & two jets, each $p_T > 45 \text{ GeV}$ 4×15 4×35 3.5 56 b -physicsTwo μ 's, $p_T > 6, 6 \text{ GeV}$ plus dedicated b -physics selections $6, 6$ $6, 6$ 4.7 20 TotalStateStateState 85 1500	$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	50	110	6	230
Multi-jets Five jets, each $p_T > 80 \text{ GeV}$ 4×15 5×70 3.5 14 Six jets, each $p_T > 70 \text{ GeV}$ 4×15 6×60 3.5 5 Six jets, each $p_T > 55 \text{ GeV}$, $ \eta < 2.4$ 4×15 6×45 3.5 18 b -jets One $b (\epsilon = 60\%), p_T > 235 \text{ GeV}$ 100 225 3 24 b -jets One $b (\epsilon = 60\%), p_T > 235 \text{ GeV}$ 100 $150, 50$ 3 20 b -jets One $b (\epsilon = 60\%), p_T > 160, 60 \text{ GeV}$ 100 $150, 50$ 3 20 b -jets One $b (\epsilon = 70\%)$ & three jets, each $p_T > 85 \text{ GeV}$ 4×15 4×75 3.5 19 $Two \ b (\epsilon = 60\%)$ & one jet, $p_T > 65, 65, 110 \text{ GeV}$ $2 \times 20, 75$ $2 \times 55, 100$ 2.7 25 $Two \ b (\epsilon = 60\%)$ & two jets, each $p_T > 45 \text{ GeV}$ 4×15 4×35 3.5 56 b -physics Two μ 's, $p_T > 6, 6 \text{ GeV}$ $6, 6$ $6, 6$ 4.7 20 $Total$ Total 85 1500 85 <		Four jets, each $p_T > 110 \text{ GeV}$	3 × 50	4×100	0.4	18
$ \begin{array}{ c c c c c c c } \hline Six jets, each p_{T} > 70 \text{ GeV} & 4 \times 15 & 6 \times 60 & 3.5 & 5 \\ \hline Six jets, each p_{T} > 55 \text{ GeV}, \eta < 2.4 & 4 \times 15 & 6 \times 45 & 3.5 & 18 \\ \hline Six jets, each p_{T} > 235 \text{ GeV} & 100 & 225 & 3 & 24 \\ \hline Two \ b's \ (\epsilon = 60\%), \ p_{T} > 160, \ 60 \text{ GeV} & 100 & 150, \ 50 & 3 & 20 \\ \hline One \ b \ (\epsilon = 70\%) \ \& \ three \ jets, \ each \ p_{T} > 85 \ \text{GeV} & 4 \times 15 & 4 \times 75 & 3.5 & 19 \\ \hline Two \ b \ (\epsilon = 60\%) \ \& \ one \ jet, \ p_{T} > 65, \ 65, \ 110 \ \text{GeV} & 2 \times 20, \ 75 & 2 \times 55, \ 100 & 2.7 & 25 \\ \hline Two \ b \ (\epsilon = 60\%) \ \& \ two \ jets, \ each \ p_{T} > 45 \ \text{GeV} & 4 \times 15 & 4 \times 35 & 3.5 & 56 \\ \hline b-physics & \hline Two \ \mu's, \ p_{T} > 6, \ 6 \ \text{GeV} \\ plus \ dedicated \ b-physics \ selections & 6, \ 6 & 6, \ 6 & 4.7 & 20 \\ \hline \hline Total & & 85 & 1500 \\ \hline \end{array}$	Multi-jets	Five jets, each $p_T > 80 \text{ GeV}$	4 × 15	5 × 70	3.5	14
Six jets, each $p_T > 55$ GeV, $ \eta < 2.4$ 4×15 6×45 3.5 18 b -jetsOne b ($\epsilon = 60\%$), $p_T > 235$ GeV100225 3 24 b -jetsOne b ($\epsilon = 60\%$), $p_T > 160, 60$ GeV100150, 50 3 20 One b ($\epsilon = 70\%$) & three jets, each $p_T > 85$ GeV 4×15 4×75 3.5 19Two b ($\epsilon = 60\%$) & one jet, $p_T > 65, 65, 110$ GeV $2 \times 20, 75$ $2 \times 55, 100$ 2.7 25 Two b ($\epsilon = 60\%$) & two jets, each $p_T > 45$ GeV 4×15 4×35 3.5 56 b -physicsTwo μ 's, $p_T > 6, 6$ GeV plus dedicated b -physics selections $6, 6$ $6, 6$ 4.7 20 Total851500		Six jets, each $p_{\rm T} > 70 \text{ GeV}$	4 × 15	6 × 60	3.5	5
$b-\text{jets} \begin{cases} & \text{One } b \ (\epsilon = 60\%), p_{\text{T}} > 235 \text{ GeV} & 100 & 225 & 3 & 24 \\ & \text{Two } b' \text{s} \ (\epsilon = 60\%), p_{\text{T}} > 160, 60 \text{ GeV} & 100 & 150, 50 & 3 & 20 \\ & \text{One } b \ (\epsilon = 70\%) \ \& \ \text{three } \text{jets, } \text{each } p_{\text{T}} > 85 \text{ GeV} & 4 \times 15 & 4 \times 75 & 3.5 & 19 \\ & \text{Two } b \ (\epsilon = 60\%) \ \& \ \text{one } \text{jet, } p_{\text{T}} > 65, 65, 110 \text{ GeV} & 2 \times 20, 75 & 2 \times 55, 100 & 2.7 & 25 \\ & \text{Two } b \ (\epsilon = 60\%) \ \& \ \text{two } \text{jets, } \text{each } p_{\text{T}} > 45 \text{ GeV} & 4 \times 15 & 4 \times 35 & 3.5 & 56 \\ \hline b-\text{physics} & & \text{Two } \mu' \text{s, } p_{\text{T}} > 6, 6 \text{ GeV} \\ & \text{plus dedicated } b-\text{physics selections} & 6, 6 & 6, 6 & 4.7 & 20 \\ \hline \text{Total} & & & 85 & 1500 \\ \end{cases}$		Six jets, each $p_{\rm T}$ > 55 GeV, $ \eta $ < 2.4	4 × 15	6 × 45	3.5	18
$b-\text{jets} \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>b</i> –jets	One $b \ (\epsilon = 60\%), p_T > 235 \text{ GeV}$	100	225	3	24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Two b's ($\epsilon = 60\%$), $p_T > 160, 60 \text{ GeV}$	100	150, 50	3	20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		One $b \ (\epsilon = 70\%)$ & three jets, each $p_{\rm T} > 85 \text{ GeV}$	4 × 15	4 × 75	3.5	19
Two b ($\epsilon = 60\%$) & two jets, each $p_T > 45$ GeV 4×15 4×35 3.5 56 b -physicsTwo μ 's, $p_T > 6, 6$ GeV plus dedicated b -physics selections $6, 6$ $6, 6$ 4.7 20 Total85		Two <i>b</i> ($\epsilon = 60\%$) & one jet, $p_T > 65, 65, 110 \text{ GeV}$	2 × 20, 75	$2 \times 55,100$	2.7	25
$b-physics$ Two μ 's, $p_T > 6, 6 \text{ GeV}$ plus dedicated <i>b</i> -physics selections6, 66, 64.720Total851500		Two $b \ (\epsilon = 60\%)$ & two jets, each $p_T > 45 \text{ GeV}$	4 × 15	4 × 35	3.5	56
Total 85 1500	<i>b</i> -physics	Two μ 's, $p_T > 6, 6 \text{ GeV}$ plus dedicated <i>b</i> -physics selections	6, 6	6, 6	4.7	20
	Total	•			85	1500

Comparison of E_T^{miss}

Comparison of efficiency for various E_T^{miss} algorithms

E_T^{miss} at HLT: methods

E_T^{miss} algorithms

- *mht scale*) Vector sum of pileup-corrected jets with $E_T > 7$ GeV (threshold at uncalibrated
- *cell* Calorimeter cells with cut on energy significance s (s > 2, -5 < s < -2)
- *topocluster* Start with seed, add neighbors, then add their neighbors
- *pueta* p.u. sub. from density in η rings
- *pufit* p.u. sub. by χ^2 fit^{*}

*Forces no E_T^{miss} from towers < threshold

Trigger cross section

Rates

- Conceptually, linear rate v. < μ > means "no pileup dependence," see left cartoon
- Rates show non-linear $<\mu>$ dependence, see right plot

arXiv: 1603.02934 Forming topoclusters

- Topoclusters: inputs for jets and E_T^{miss}
- Same as offline: made for every event

Iterative algorithm: 4/2/0

- 1. Seed: $|E| > 4\sigma$
- 2. Add neighbors: $|\mathbf{E}| > 2\boldsymbol{\sigma}$
- 3. Add cells on perimeter: $|E| > 0\sigma$
- **σ**: noise from electronics + pileup

see event <u>display</u>

Corrects: calorimeter response, losses in clustering, dead material

arXiv: 1603.02934 Forming topoclusters

- Sequential algorithm to combine cells
- Projection in one layer of FCAL

σ defined by *electronics* + *pileup* noise

++ neighbors

Seed

+ neighbors

Illustration of 4/2/0 scheme (can change thresholds)

L1 jet trigger efficiency

Turn-on curve for jet trigger

ATL-COM-DAQ-2016-087 (link)

L1 forward jet trigger efficiency

Turn-on curve for jet trigger

ATL-COM-DAQ-2016-087 (link)

gFEX architecture

Global feature extractor: single board targeting boosted jets

Details

- Detector split into three FPGAs
- Jet algorithm: like a cone jet
- Global variables: H_T, E_T^{miss}

ATL-DAQ-PROC-2015-059

Large radius jets

Carlson 50

Global feature extractor: single board targeting boosted jets

- Event by event pileup subtraction: allow for lower rates at high pileup (left)
- Larger radius jets to trigger efficiently on boosted jets (right)

ATL-COM-DAQ-2014-087

L1Calo EM algorithms

- Trigger towers (TT): $\Delta \eta \propto \Delta \phi = 0.1 \times 0.1$
- EM RoIs constructed using a sliding window algorithm over 4x4 TT

- Each EM RoI characterized by:
 - Core E_T
 - EM isolation
 - **Ring:** E_T in EM layer, 1 TT ring around core
 - Hadronic isolation
 - **Core**: E_T in hadronic layer behind core
 - Ring: E_T in hadronic layer, 1 TT ring around core

Improved run 3 resolution

High granularity to improve resolution

- Trigger tower resolution: 0.1 x 0.1
- Supercell resolution 0.025 x 0.1 (depending on layer)

ATLAS-TDR-022

Compressed SUSY

• Sensitivity by **VBF invisible**?

Direct EW SUSY: charged

• Currently sensitive for the case where leptons missed?

Decay modes

Branching fraction

p_T distribution of VBF jets

• T •

$\Delta R(\boldsymbol{\tau},\boldsymbol{\tau})$ efficiency

Impact of additional L1 requirements

- Excellent signal efficiency after offline requirements for $H \rightarrow \tau \tau$ (left)
- L1 signal efficiency for $\Delta R(\boldsymbol{\tau},\boldsymbol{\tau})$ is fairly sharp (right)

Trilinear self-coupling limits

3000 fb ⁻¹				
Decay	Br (%)	Yield	limit λ/λ_{SM}	Documentation
bb(bb)	33	40000	-3.5 - 11	ATL-PHYS-PUB-2016-024 (<u>link</u>)
bb(WW)	25	31000		-
bb(77)	7.3	8900	-4 - 12	ATL-PHYS-PUB-2015-046 (<u>link</u>)
ZZ(bb)	3.1	3800		
$WW(\tau \tau)$	2.7	3300		-
ZZ(WW)	1.1	1300		
γγ (bb)	0.26	320	-1 - 7	ATL-PHYS-PUB-2017-001 (<u>link</u>)
$\gamma\gamma(\gamma\gamma)$	0.001	1.2		-

$HH \rightarrow 4b$

Run 2 extrapolation to 3ab⁻¹

- Multijet background difficult to estimate (used data)
- Investigate various assumptions on background systematics and jet p_T threshold

ATL-PHYS-PUB-2016-024 (link)

HH \rightarrow bb($\gamma\gamma$)

strip TDR

Extrapolation to 3ab⁻¹ performed using smearing functions (link)

- New photon ID optimized for $<\mu>=200$
- Latest b-tagging function and pileup jet contribution used
- Main background, non-resonant QCD with at least one γ [bb $\gamma\gamma$] (left)
- [so far] most sensitive HH channel (right)

ATL-PHYS-PUB-2017-001 (link)

