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Outline

Trigger overview 
• Why a trigger and how does it work 
• What we actually trigger on 

Examples of triggers starting from physics  
• Examples from BSM Higgs: ETmiss, VBF, VBF + 𝜸 
• Examples from diHiggs: multijet  
• Examples from heavy resonances: boosted jets

Goal of this talk: solicit feedback on ideas for what we should 
include in the trigger to dig deeper during the LHC run 2
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What I won’t discuss in detail 
• 𝝉’s, electrons, muons, long-lived particles 

Can we improve?



Physics→trigger signatures
Dark Matter

SUSY

Exotic Higgs 
(+ production modes)

X(750) 𝜸

𝜸

• Electrons  
• Muons 
• Taus 
• Photons 
• Jets (pT, multijets, HT, b-jets) 
• ETmiss 

• Not yet implemented

Triggers signatures

Not yet thought of 

?

?

Maximize coverage, minimize the not yet implemented!
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Why a trigger?

𝛔(pp)  = 90 mb

Higgs

1 kHz

1 Hz
10 Hz
100 Hz

Rate

105

104

103

102

101

1
10-1

6 orders of magnitude 

9 orders of magnitude 

(1 x 1034 cm-2s-1)

850 GeV gluino 



Pileup

Pileup: multiple interactions per bunch crossing 
• In time pileup: interactions in one bunch crossing 
• Out of time pileup: interactions from previous bunch crossing 

Interaction rate (effective number of pp collisions) ~ 1 GHz 
• B.C. rate = 40 MHz, <µ> = 25,  
• 40 MHz x 25 = 1 GHz 

Effects of pileup must be mitigated in the trigger 

70-90 bunches/train25ns spacing

+… +…gap b/w trains

Proton bunches are formed in trains around the LHC ring

~2200 total bunches 
(2016)

3564 maximum

<µ> <µ> in 2016: 20-40

bunch crossing 
rate: ~40 MHz 

(1/25ns)



ATLAS detector

6

Tracker

EM calo

Had. calo

Muon 
chambers

e µ ɣ τ q/g b νBeam PipeATLAS
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coarse calorimeter and muon to L1

full calorimeter and muon data to HLT

Hardware trigger (L1): 
select in 2.2 µs

Software trigger (HLT) 
select in  0.1 s

100 kHz 

some tracking

1 kHz 
Save to disk

to L1



L1 calorimeter trigger

ϕ

η

Forw
ard  

calorim
eter

0.1 x 0.1  
Δη x Δϕ

Trigger towers: Analog 
sum of pulses from 
calorimeter cells

Digitize pulse 
b.c. identification

Pileup filtering

Jets 
ETmiss

e/𝜸/𝞃 Angular cuts 
Mass
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*muons not shown

🆕
L1 accept

Central trigger 
processor 

Reference: link, link

η = 3.1

http://iopscience.iop.org/article/10.1088/1748-0221/3/03/P03001/meta;jsessionid=133AACF448664921F9A12767D28A75EF.c5.iopscience.cld.iop.org
http://iopscience.iop.org/article/10.1088/1748-0221/9/01/C01023/pdf


Improvements to L1Calo
Upgrades after run 1 needed for hadronic triggers 

• Improved pileup filters reduce impact of out of time pileup (left, backup)  
• Pedestal correction removes dependence on position in bunch train and 

reduces exponential dependence (right)

Rate / bunch vs. pileup
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50 ns pp Collision Data

without pedestal correction

with pedestal correction

luminosity ~ pileup
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before pedestal correction

after pedestal correction

ETmiss

visible

invisible

ATL-COM-DAQ-2015-150

L1 rate vs. ETmiss threshold 

*Threshold at L1 not equivalent to offline ETmiss

*

ATL-COM-DAQ-2013-150

Run 1

Run 2

https://cds.cern.ch/record/2053123
https://cds.cern.ch/record/1631717


L1 trigger rate vs. lumi block

What we trigger on (L1) 9Carlson

Reference, link

single muon
multi muon
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= 13 TeVspp Data July 2016, 

Breakdown of rate by physics 
• L1 total: ~100 kHz 
• Dominant fraction used by lepton triggers  
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= 13 TeVspp Data July 2016, 

Luminosity decreases with lumi block

Breakdown of contributions

prescale change

Total L1 rate Not equal to sum of 
contributions (overlaps)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerOperationPublicResults


HLT trigger rate vs. lumiblock

What we trigger on (HLT)

Reference, link

Breakdown of rate by physics 
• HLT total: ~1 kHz 
• ETmiss fraction substantial because of pileup dependence  

Breakdown of contributions (overlaps included)
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= 13 TeVspp Data July 2016, 

Significant pileup dependence 

Total rate Not equal to sum of 
contributions (overlaps!)

prescale change

HLT bandwidth
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= 13 TeVspp Data July 2016, single muon
multi muon

Single electron
Multi electronSingle jet

Multi jet

ETmiss

TAU

Combined

b-jets

𝜸
B-Physics

10Carlson

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerOperationPublicResults


Trigger thresholds (2016)

Single mu

Single e

Two mu

Two e

Two tau

Two photons

Threshold (GeV)

0 17.5 35 52.5 70

Isolated Non-isolated
Symmetric Lead
Sub-leading

Single jet

Multijet

1 b-jet

2 b-jets

ETmiss

Threshold (GeV)

0 125 250 375 500

Single tau
Single photon

Threshold (GeV)

0 42.5 85 127.5 170

4,5,6 jets

R = 0.4 

Range depending on use

R= 1.0

Asymmetric

Isolated

Non-isolated

Most of the rate goes to inclusive triggers (backup for more complete table) 
• Triggers targeting specific processes tend to be lower rate 

 ATL-COM-DAQ-2017-001
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*dedicated triggers with more complicated 
kinematic requirements not shown here

https://cds.cern.ch/record/2242069/files/ATL-DAQ-PUB-2017-001.pdf


BSM Higgs decays
Higgs could have significant fraction of decays to BSM 

• Decay to invisible (left) 
• Many final states where Higgs couples to a scalar a (right)

pT ~ 30 GeV

Higgs to invisible Higgs to 4b, largest Br decay

12Carlson



Why VBF?

13

ggF

VBF

VH

ttH

Br hit inVH and ttH

hadron collider production modes

V = W, Z

largest Br, but trigger / backgrounds 
make this intractable for some final 

states

13 TeV
𝛔(VBF)/𝛔VH x Br ~ 10

Possible to gain 
significant stats for 
hadronic final states

(e,µ,ee,µµ)

Carlson 13



Triggers for VBF H→inv

14

Jet

Jet

ETmissInvisible

tag jets

Possible triggers 
• Jets: difficult to get out of L1 if only require two jets above pT threshold  

(until recently only counting of jets above threshold possible at L1) 

• ETmiss: efficient for > 150 GeV, with L1 rate ~5kHz

Rate ~ 𝛔(QCD dijet) x Linst ~ 107pb x 10-2pb-1s-1 = 100 kHz 

Carlson 14



ETmiss distribution
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QCD (sketch)

signal (w/ jet selection): 
• Jet pT > 75 (50) GeV 
•   Δϕ(jj) < 2.5

signal 
(no selections)

Private work: VBF H→inv simulation, pp 13 TeV

Higgs pT boost 
from jet selections 

• After (loose) selections, ETmiss distribution peaks at ~150 GeV
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ETmiss trigger performance 16

Efficiency curves for ETmiss,  
reference events selected with lepton triggers

Carlson

 (offline, no muons, no soft term) [GeV]miss
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 ATL-COM-DAQ-2017-001Reference, link

ETmiss triggers  
• Several algorithms available at HLT (backup), mht uses calorimeter jets 
• ETmiss: offline threshold ~ 150 GeV, approximately L1 limited (left) 
• Dramatic rate increase with <µ>, but are constantly improving (right)

Average number of interactions per bunch crossing
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ATLAS Trigger Operations
= 13 TeVsData 2016, 

MHT130

PUFIT110 

MHT110 
& CELL70

MHT110

Trigger cross section vs. <µ>

L1 xe90_mht 
(jets)

xe100 (cells)

cross section = rate / lumi

https://cds.cern.ch/record/2242069/files/ATL-DAQ-PUB-2017-001.pdf
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MissingEtTriggerPublicResults


Why a VBF trigger
Jet

Jet

dijet mass:  
m2(jj) ~ pT(j1) • pT(j2) • eΔη(jj)

tag jets

Trigger on the jet kinematics at L1 
• Need handle in addition to jet pT 
• m(jj) or kinematic quantities to reduce background 

L1 trigger variable

• low-pT jets  
• low-pT e,µ,𝝉 
• Many soft particles 
• Long-lived (?)

what if  

decay products are…

Trigger on the tag jets

17Carlson



Reducing the rate
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CMS simulation

-1 = 8 TeV, L = 19.5 fbs
VBF H(inv)

inv) = 100%→B(H
 = 125 GeV,HVBF m

EWK

QCDpT > 50 (50) GeV 
(opposite hemi.) 
m(jj) > 150 GeV 
ETmiss > 130 GeV

 m(jj) (GeV)

QCD background falls rapidly with m(jj)

Trigger events with m(jj) to reduce QCD  
• Orders of magnitude background reduction to help with rate 
• Also used in offline selections to remove QCD

VBF H125

QCD

O(102) rate reduction 

Illustrative plot from CMS, note 
some selections
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Kinematics at L1

Additional flexibility at L1 possible 
• Compute variables from truncated lists of inputs (jets, muons, EM, +…) 
Possible m(jj) trigger at L1 
• Two lists of up to six jets, pT > 60(50) GeV (offline) 
• Compute m(jj) for all combinations  
Rate driven up by combinatorics and pileup in fwd region 
• Restrict |η| ranges in m(jj) combination  

j1 j2

mass: m(jj)

j1

ETmiss

Δϕ(j, ETmiss)

j1
j2

HT
j3

Carlson 19



Reduce combinatorics

|η|
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leading jet

subleading jet

leading jet, after selections

subleading jet, after selections

VBF MH=125

FCALCentral

leading subleading Fraction 
[%]

Central Central 25
Forward Central 18
Central Forward 46

Forward Forward 11

Total 100

To reduce the rate, restrict |η| for combinations  
• ~50% of signal events have central-forward combination 
• Significant rate reduction makes this a plausible strategy 

Jet |η| distribution for VBF tag jets Fraction of events split into 
combinations of central/forward 

(central defined as |η| < 3.1)

Includes selections  
pT > 75 (50) GeV 

m(jj) > 1 TeV, |Δη| > 4.8
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VBF heavy scalar

|ηjet |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.50
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2500
 = 125 GeVHm
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 = 1000 GeVHm
 = 2000 GeVHm

(leading)

A
rb

. n
or

m
. Loose requirement: 

jet pT > 20 GeV

Physics in the forward-forward category? 
• Jets from a heavy scalar are even more forward  
• Significant fraction of these events will be lost by central-forward requirement 

MH=2 TEV
MH1=1 TEV

MH=500 GEV

MH125
Theoretical 

justification would 
help here…

Also trigger on 
FF category?

Jet |η| distribution for a heavy scalar, VBF production
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VBF + 𝜸
Jet

Jet

tag jets

ATLAS-CONF-2016-063

𝛔(VBF H + 𝜸) ~ 70 fb

Clean events with a photon (initially implemented for H→bb, but generally useful) 
• 60% L1 bandwidth already goes to EM 
• 2016 trigger seeded from EM item at L1:  

 𝜸 pT > 22 GeV, m(jj) > 700 GeV 
• Future trigger will require L1 m(jj) as well

+ photon

Carlson 22



Dihiggs

X
λ

Trilinear self-coupling Box diagramX coupling to HH

cross section ~ 40fb

23Carlson

All hadronic X→HH, m4j distribution

• Run 2 analysis uses combination of 
several jet triggers 

• Most important trigger: multijet 
• Many users of multi jet triggers

Proposed trigger strategy for 4b similar 
between run 2 and HL-LHC, but contingent 

on trigger upgrades



Multijet triggers

 ATL-COM-DAQ-2016-130 (link)
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Efficiency of L1 3(4) jet triggers 
offline, |η| < 2.8 Efficiency of HLT 5 jet trigger

3J15
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65 GeV

75 GeV 105 GeV
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Lowest unprescaled triggers: 4J15, 3J50 
• Efficiency curves for L1 multijet triggers (left) 
• Efficiency curve for HLT 5-jet trigger (right) 
• Approximately L1 limited

24Carlson

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetTriggerPublicResults#2016_pp_Data


Large-R single jet 25

Distribution of mVH formed from two large-R jets

Carlson

ATLAS-CONF-2016-083

Boosted jets reconstruct resonances, V’→VH 
• Trigger: single R = 1.0 jet, pT > 420 GeV, mVH distribution (right) 
• Trigger threshold can be improved using jet mass requirement (left) 

ATL-COM-DAQ-2017-007

pT > 450 (250) GeV 
mjet > 50 GeV

Efficiency curves (equal rate) demonstrating 
improvements to large-R jet triggers
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https://cds.cern.ch/record/2206276/files/ATLAS-CONF-2016-083.pdf
https://cds.cern.ch/record/2244774/


Large-R dijet

Turn-on curve for boosted jet trigger
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Jet mass requirement reduces threshold  
• L1 seed fully efficient by 220 GeV (offline): HLT limited 
• However, L1 inefficient for >2 sub-jets (see right, backup) 
• Run 3: global feature extractor to target this, but opportunity also in run 2
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Efficiency curves (equal rate) demonstrating 
improvements to large-R jet triggers

mjet > 30 GeV

ATL-COM-DAQ-2017-007 ATL-COM-DAQ-2014-087
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https://cds.cern.ch/record/2244774/
https://cds.cern.ch/record/1749167


Conclusions
The ATLAS trigger system  

• Remarkable system with a great deal of flexibility  
• Many improvements implemented already 

Examples of triggers motivated by physics use cases 
• ETmiss 

• VBF 

• Multijet triggers 
• Boosted jet triggers
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Backup 28



Timeline for upgrades

ATLAS upgrade 
• 2019: significant upgrades in trigger readout electronics and L1 trigger electronics 
• 2024: upgrades to tracker, calorimeters, muon system and trigger 

LHC and experiment upgrade schedule 

Upgrade 2019

Carlson 29

Needed to cope with increasing pileup & add new features

2017

150 fb-130 fb-1 300 fb-1 3000 fb-1

Upgrade 2024

Reference: link, link

https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm
https://project-hl-lhc-industry.web.cern.ch/content/project-schedule


Trigger upgrade overview

Digitize trigger readout path and increase physics capability  
• Global feature extractor [gFEX]: no direct analog in existing system 
• Run 2 system also will operate during commissioning of run 3 system

Carlson 30

Jet finding 
ETmiss

e/𝜸/𝞃

Electron 
Feature 

Extractor

Jet 
Feature 

Extractor

Global 
Feature 

Extractor

e/𝜸/𝞃

R = 0.4 Jets 
ETmiss/𝞃

R = 1.0 Jets 
Global/ETmiss

Angular cuts 
Mass L1 accept

L1Topo CTP

Run 3 system

Run 2 system

*muons not shown

Calorimeters

Liquid  
Argon

Tile

electromagnetic 
& 

hadronic

hadronic

Digitize 
supercells 

Digitize  
Trigger towers

Granularity  

[Δη x Δϕ]

[0.025 x 0.1]

[0.1 x 0.1]

[0.1 x 0.1]

[0.25 x 0.1]

[0.2 x 0.2]

ATLAS-TDR-023

Small

Medium 

Large

https://cds.cern.ch/record/1602235?ln=en


Detector upgrade

Primary focus of upgrade physics on performance of phase II

Calorimeters 
• New BE/FE electronics  
• New HV power supplies 
• Lower LAr temperature  
• Additional tile granularity (?)

High granularity timing 
detector (?) 
• 2.4 < |η| < 3.8

Tracker (ITk) 
• All silicon tracker (strip & 

pixel) 
• Radiation tolerant 
• High granularity  
• Low material budget 
• Coverage to |η| = 4.0

Muon  
• New BE/FE electronics 
• New RPC layer in inner barrel 
• Muon tagging 2.7 < |η| < 4.0 (?)

TDAQ  
• L0 rate ~ 1 MHz (latency up to 10 µs) 
• Possible hardware L1Track 
• Possible 10 kHz HLT output



Rate reduction for 𝝉had triggers with 
angular and jet requirements   

Trigger for H→𝝉𝝉
Unsustainable rates 𝝉 rates reduced with ΔR(𝝉,𝝉) & jet requirement  

• Factor ~5 rate reduction (below), with negligible signal loss, targeting H→𝝉𝝉 (backup) 
• Full requirement: pT 𝝉𝝉 > 20 (12) GeV, ΔR(𝝉,𝝉) < 2.9, pT jet > 25 GeV  

[offline: pT 𝝉𝝉 40 (30) GeV, 60 GeV jet]

pT 𝝉𝝉 > 20 (12) GeV

pT 𝝉𝝉 > 20 (12) GeV  
pT jet > 25 GeV

pT 𝝉𝝉 > 20 (12) GeV 
ΔR(𝝉,𝝉) < 2.9

pT 𝝉𝝉 > 20 (12) GeV  
ΔR(𝝉,𝝉) < 2.9 

pT jet > 25 GeV

rate kHz

 ATL-COM-DAQ-2017-001

Missing some 𝝉𝝉 
decays, where 𝝉𝝉 pair 

is back to back

Additional kinematic 
requirements needed?
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https://cds.cern.ch/record/2242069/files/ATL-DAQ-PUB-2017-001.pdf


HT trigger 33

Efficiency curves for HT,  rates for 2x1034cm-2s-1

Carlson

 ATL-COM-DAQ-2017-001

HT: scalar sum of jet pT (central) 
• L1 fully efficient by HT = 400 GeV (offline) with reasonable rate (left) 
• HLT fully efficient by HT = 1 TeV (offline), could be updated with new L1 seed

Efficiency (HLT) for ht trigger. 
Note, seeded by L1_J100, as L1_HT was not 

yet available 

Rate 9 kHz

UPDATE ME!!!!

Rate 2.8 kHz

375 GeV

400 GeV

https://cds.cern.ch/record/2242069/files/ATL-DAQ-PUB-2017-001.pdf


Profile of <µ> vs. time (2016)



Data readout
30 MHz 
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Derived from “Performance of the 
ATLAS Trigger System in 2015”  

arXiv: 1611.09661
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https://arxiv.org/pdf/1611.09661v1.pdf


Autocorrelation filter
Apply several techniques to mitigate pileup 

• Pedestal correction      Removes bunch train dependence 
• Autocorrelation filter  Removes sensitivity to previous bunches

Filter coefficients
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• Negative coefficients reduce impact 
of out of time pileup 

ATL-COM-DAQ-2015-150

https://cds.cern.ch/record/2053123


Dealing with pileup
Apply several techniques to mitigate pileup 

• Pedestal correction      Removes bunch train dependence 
• Autocorrelation filter   Removes sensitivity to previous bunches

Calorimeter pulse shape 

• Sum over 24 bunch crossings is 0: 
cancels out of time pileup 

• Leading edge of pulse tends to 
increase trigger rate for first few 
bunches 

• Pedestal correction removes this 
artifact  

• Also corrects for differences in 
luminosity for each bunch

1 bunch crossing = 25 ns

37Carlson

multiple pp collisions per 
bunch crossing

(out of time pileup)



Pedestal correction: ETmiss

ETmiss trigger requires a pedestal correction  
• Rate significantly higher for first few bunches  
• Remove spike at start of bunch trains (left) 
• Pedestal correction reduces exponential dependence on pileup (right)

L1 rate vs. position in bunch train: 
Rate rises at start of train

Rate / bunch vs. pileup
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Rate spike at start of 
train removed with 
pedestal correction

luminosity ~ pileup

38Carlson

before pedestal correction

after pedestal correction

ETmiss

visible

invisible

start of bunch train

ATL-COM-DAQ-2015-150

https://cds.cern.ch/record/2053123


Impact of pileup mitigation
Apply several techniques to mitigate pileup 

• Pedestal correction      Removes bunch train dependence 
• Autocorrelation filter  Removes sensitivity to previous bunches

L1 rate vs. ETmiss threshold 

Autocorrelation filter

Autocorrelation filter + pedestal correction

• Autocorrelation and pedestal 
correction allow for x10 rate 
reduction

Matched filter: 2011 settings
Matched filter: 2012 settings

*Threshold at L1 not equivalent to offline ETmiss

*

39Carlson

more on autocorrelation filter, 
see Wikipedia!

separate signal from pileup noise by deweighting previous bunches

ATL-COM-DAQ-2013-150

https://en.wikipedia.org/wiki/Autocorrelation
https://cds.cern.ch/record/1631717


Trigger menu (2015)

From “Performance of the ATLAS 
Trigger System in 2015”  

arXiv: 1611.09661

Not a complete list..

https://arxiv.org/pdf/1611.09661v1.pdf


Trigger menu (2016)

 ATL-COM-DAQ-2017-001

Not a complete list..

https://cds.cern.ch/record/2242069/files/ATL-DAQ-PUB-2017-001.pdf


Comparison of ETmiss
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ETmiss at HLT: methods 43Carlson

ETmiss algorithms 
• mht   Vector sum of pileup-corrected jets with ET > 7 GeV (threshold at uncalibrated 

scale) 

• cell   Calorimeter cells with cut on energy significance s (s > 2, –5 < s < –2) 
• topocluster Start with seed, add neighbors, then add their neighbors 
• pueta   p.u. sub. from density in η rings 
• pufit   p.u. sub. by χ2 fit* 

*Forces no ETmiss from towers < threshold 

From “Performance of the ATLAS 
Trigger System in 2015”  

arXiv: 1611.09661

https://arxiv.org/pdf/1611.09661v1.pdf


Trigger cross section 44

HLT cross-section = rate / lumi

Carlson

Rates 
• Conceptually, linear rate v. <µ> means “no pileup dependence,” see left cartoon 
• Rates show non-linear <µ> dependence, see right plot

rate

non-linear rate =  
non-constant cross-section

Cartoon of rates

linear rate =  
const. x-section
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Forming topoclusters 45

Iterative algorithm: 4/2/0  
1. Seed: |E| > 4𝛔 
2. Add neighbors: |E| > 2𝛔 
3. Add cells on perimeter: |E| > 0𝛔

• Topoclusters: inputs for jets and ETmiss 
• Same as offline: made for every event

LCW calibration sequence

arXiv: 1603.02934

𝛔: noise from electronics + pileup

Corrects: calorimeter response, losses in clustering, dead material

see event display

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2014-07/


Forming topoclusters
• Sequential algorithm to combine cells 
• Projection in one layer of FCAL

46

2𝛔

arXiv: 1603.02934

Seed + neighbors ++ neighbors 

4𝛔 0𝛔|E| >

𝛔 defined by  
electronics + pileup noise

Illustration of 4/2/0 scheme (can change thresholds)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2014-07/


L1 jet trigger efficiency

Turn-on curve for jet trigger
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L1 forward jet trigger efficiency

Turn-on curve for jet trigger

ATL-COM-DAQ-2016-087 (link)
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Global feature extractor: single board targeting boosted jets 

Details 
• Detector split into three FPGAs 
• Jet algorithm: like a cone jet 
• Global variables: HT, ETmiss 

     

gFEX architecture  49

gFEX layout Event display

Carlson

ATL-DAQ-PROC-2015-059

https://cds.cern.ch/record/2104248/files/ATL-DAQ-PROC-2015-059.pdf


Global feature extractor: single board targeting boosted jets 
• Event by event pileup subtraction: allow for lower rates at high pileup (left) 
• Larger radius jets to trigger efficiently on boosted jets (right) 

     

Large radius jets 50

Online energy density (𝞺) vs. offline 𝞺 Turn-on curve for boosted jet trigger

Carlson
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https://cds.cern.ch/record/1749167


L1Calo EM algorithms 
• Trigger towers (TT): Δη x Δϕ=0.1x0.1 
• EM RoIs constructed using a sliding window algorithm over 4x4 TT

51ATL-COM-DAQ-2013-057

• Each EM RoI characterized by: 
• Core ET  
• EM isolation 

• Ring:  ET in EM layer, 1 TT 
ring around core 

• Hadronic isolation 
• Core: ET in hadronic layer 

behind core 
• Ring: ET in hadronic layer, 1 

TT ring around core

focus for  
this talk

https://cds.cern.ch/record/1564863/


Improved run 3 resolution
High granularity to improve resolution  

• Trigger tower resolution: 0.1 x 0.1 
• Supercell resolution 0.025 x 0.1 (depending on layer)

Resolution improves: higher granularity 

*

Granularity improvement 

ATLAS-TDR-022

https://cds.cern.ch/record/1602230/


Compressed SUSY

• Sensitivity by VBF invisible?

53
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Direct EW SUSY: charged

• Currently sensitive for the case where leptons missed?

54

target this part

https://indico.cern.ch/event/493539/contributions/1172385/subcontributions/104043/attachments/1249831/1842251/SoftLeptonsPhysMotivationPetridis.pdf


Decay modes
Branching fraction



pT distribution of VBF jets
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ΔR(𝝉,𝝉) efficiency 

Efficiency of ΔR(𝝉,𝝉) requirement at L1
Signal efficiency for H→𝝉𝝉 after cuts 
not impacted by ΔR(𝝉,𝝉)  requirement

Impact of additional L1 requirements  
• Excellent signal efficiency after offline requirements for H→𝝉𝝉 (left) 
• L1 signal efficiency for ΔR(𝝉,𝝉) is fairly sharp (right)



Trilinear self-coupling limits

Decay 
channel

Br (%) Yield limit λ/λSM Documentation
bb(bb) 33 40000 -3.5 - 11 ATL-PHYS-PUB-2016-024 (link)

bb(WW) 25 31000 -
bb(𝝉𝝉) 7.3 8900 -4 - 12 ATL-PHYS-PUB-2015-046 (link)

ZZ(bb) 3.1 3800
-WW(𝝉𝝉) 2.7 3300

ZZ(WW) 1.1 1300
𝜸𝜸(bb) 0.26 320 -1 - 7 ATL-PHYS-PUB-2017-001 (link)

𝜸𝜸(𝜸𝜸) 0.001 1.2 -

3000 fb-1

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2016-024/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2015-046/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-001/


HH→4b
Run 2 extrapolation to 3ab-1 

• Multijet background difficult to estimate (used data) 
• Investigate various assumptions on background systematics and jet pT threshold 

m4j: search distribution Expected limit on λ/λSM

allowed 
-3< λ/λSM < 11

excludedexcluded

ATL-PHYS-PUB-2016-024 (link)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2016-024/


HH→bb(𝜸𝜸)
Extrapolation to 3ab-1 performed using smearing functions (link) 

• New photon ID optimized for <µ> = 200 
• Latest b-tagging function and pileup jet contribution used 
• Main background, non-resonant QCD with at least one 𝜸 [bb𝜸𝜸] (left) 
• [so far] most sensitive HH channel (right)

m𝜸𝜸: search distribution Expected 95% C.L. limit on λ/λSM

allowed 
-1< λ/λSM < 7

excluded

excluded

ATL-PHYS-PUB-2017-001 (link)

strip TDR

https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/UpgradePerformanceFunctions
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-001/
https://cds.cern.ch/record/2239048/

