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http://en.wikipedia.org/wiki/Phase_diagram


The role of dileptons 

 Dileptons pairs: dielectons (e+e-) and 
dimuons (m+m-) 

 Emitted throughout the space-time 
evolution of the collision 

 Electomagentic probes, not sensitive 
strong interactions 

 Probe the medium at the time of their 
creation 
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Known sources of dielectrons at RHIC: 

– Dalitz decays of ’

– Direct decays of ,  
– Charm (beauty) production 

– Drell-Yan 
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Experimental framework 
for the low-mass dielectron measurements 

 Collider experiments: 

 PHENIX and STAR at RHIC: study of various collisions systems (Au+Au, 
Cu+Cu, U+U) at √sNN ranging from 19.6 to 200 GeV 

 Fixed target experiments: 

 CERES, NA60 at SPS 

 HADES at GSI 

 Other 

 ALICE at LHC (dielecton results in p+p and p+Pb) 

 

 Major experimental challenge: low S/B typically (1/1000-
1/200) and a large hadron contamination 
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FAIR, NICA, JPARC 

Collider 

Fixed target 

Freeze-out conditions 
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The reference systems 

 To determine QGP properties need reference 

systems: 

 p+p collisions (reference for vacuum properties) 

 d+Au, p+Pb (reference for cold-nuclear matter effects) 

 Hadronic cocktail (simulated contributions of all known 

sources at a given energy and collision system) 
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The reference systems: p+p collisions 

 STAR data from p+p 

collisions at √s=200 GeV 

(example) 

 Data consistent with the 

cocktail  no excess 

suppression at any 

invariant mass 

 Proof of principle for 

understanding of both the 

cocktail and the data 
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The hadronic cocktail (PHENIX) 

 Hadron decays simulated in EXODUS  

 Fit π0 and π± data p+p or Au+Au to modified 
Haggedorn function: 

 

 

 

 for other mesons η, ω, ρ, ϕ, J/Ψ  etc. use pion 
parametrization and replace: 

 

 The absolute normalization of each meson 
provided by meson to π0 ratio at high pT 

 Open heavy flavor (c,b) simulated with 
MC@NLO and PYTHIA 

 The cocktail filtered through detector 
acceptance and smeared with resolution 

  Normalization 

 In mee<0.1 GeV/c2 and pT/mee>5 

 Normalize to measured ++direct g 

 

 

222
0

mmpp TT 
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PHENIX PRC 93, 014904 (2016) 

Uncertainty in the charm cross-section and 

shape - PHENIX PRC 91, 014907 (2015)  

  PYTHIA cocktail and MC@NLO cocktail 



Experimental results 
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Dielectron results from STAR 

Invariant mass spectra from: 

 Au+Au @20-200 GeV 
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STAR, PRC 92, 24912 (2015) 

200 GeV 

62 GeV 

39 GeV 

27 GeV 

19.6 GeV 



Dielectron results from STAR 

Invariant mass spectra from: 

 Au+Au @20-200 GeV 

 U+U @193 GeV 
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STAR, PRC 92, 24912 (2015) 

Enhanced dielectron production in the region 

around 0.5 GeV/c2 observed in all systems and 

at all energies 



Dielectron results from PHENIX 
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Minimum bias 

PHENIX PRC 93, 014904 (2016) 



Dielectron results from PHENIX 
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Minimum bias Centrality dependence 

PHENIX PRC 93, 014904 (2016) 



Dielectron results from PHENIX 
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Minimum bias Centrality dependence 

PHENIX PRC 93, 014904 (2016) 

Enhanced dielectron production in the region 

around 0.5 GeV/c2 observed in Au+Au @200 

GeV, most pronounced in central collisions 



Recent results at lower energies 

 Results from HADES@GSI 

 Ar+KCl @ 1.76 AGeV, PRC 84 014902 (2011) 

 

 

 

 

 

 

 

 

 

 Dielectron excess in Ar+KCl x2-3 larger than in C+C collisions 
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Theoretical models 
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Recent theoretical models 

 

 Macroscopic effective many-body theory models. E.g. model originally 

developed by Rapp and Wambach, which uses an effective Lagrangian and 

many-body approach to calculate the EM spectral function.  

 

 Microscopic transport dynamic models. E.g. Parton-Hadron String 

Dynamic (PHSD) or Ultra-relativistic Quantum Molecular Dynamics (UrQMD) 

 

 Coarse-graining models. Dynamics based on microscopic description (e.g. 

UrQMD), with phase-space cells averaged over many events allow 

describing the dynamics in (macroscopic) terms of temperature and barion-

chemical potential. 
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What happens with the  meson in medium?  

 Results from NA60@SPS – high precision dimuons 

 In+In collisions 158 AGeV favor broadening and rule out dropping rho–
mass scenario 

 

 

 

 

 

 

 

 

 

 Excess dimuons well explained by thermal radiation from the hadron gas 
(   mm ) in the LMR and thermal radiation from the QGP in the 
IMR 

 

 

 

Eur. Phys. J. C 59 (2009) 607 
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Rapp’s model: 
comparison to PHENIX 

PHENIX PRC 93, 014904 (2016) 
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Dielectron excess well described by the model of R. Rapp: 

(Rapp and Wambach, EPJ C 6, 415 (1999); Rapp, PRC 63, 054907 (2001)) 

• In-medium  broadening due to scatter off baryons in hadrons gas as the system 

approaches the critical temperature  

• A small contribution from the QGP thermal dielectron emission. 

Au+Au at √sNN=200 GeV 



Rapp’s model: 
comparison to STAR 

 Different collision systems 
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Au+Au at √sNN=20-200 GeV U+U at √sNN=193 GeV 



Rapp’s model: 
comparison to STAR 

 Different collision systems 
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Au+Au at √sNN=20-200 GeV U+U at √sNN=193 GeV 

The model 

describes 

dielectron yields 

at various energies 

and different 

collision systems 



Coarse-graining model:  
comparison to PHENIX and STAR 
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 Dielectron excess in the LMR well described by the coarse-graining model 
(Endres, van Hees, Bleicher PRC94 024912 (2016)) 

• The curves include the hadronic contributions  (the cocktail) from the UrQMD and the 

thermal dielectron emission 

• The data described well in invariant mass and transverse momentum 



Coarse-graining model: 
comparison to HADES 

 Dielectrons from Ar+KCl @ 1.76 AGeV recorded by HADES 

PRC 84 014902 (2011) 

 The coarse-graining model 

provides satisfactory descri- 

ption PRC 92 014911 (2015) 

 The dominant contribution from 

broadened  meson in the 

presence of baryonic matter 

 Non-negligible broadening of  

omega meson 

 Slight overestimation of data 

at pole-mass 

37 Mihael Makek Zimányi school 2016 



Rapp vs. PHSD:  
comparison to STAR 

STAR, PRC 92, 24912 (2015) 

 Dielectron excess described within the experimental errors by the models Rapp 
(Rapp, PoS CPOD2013, 008 (2013)) and PHSD (Linnyk et al., PRC 85, 024910 (2012)): 

• The excess is due to in-medium  broadening 

• A small contribution from the QGP thermal dielectron emission. 

• Centrality dependence is well described 

Au+Au at √sNN=200 GeV 
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What have we learned? 

 Suggested approach to chiral symmetry restoration:  

a1 and  become degenarate as the system approaches critical 

temperature 
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Hohler and Rapp, PLB 731, 103 (2014)  



 Fireball life time can be modeled 

What have we learned? 
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 Fireball life time can be modeled 

What have we learned? 

• longer in central 

collisions 

• longer at higher 

energies 
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Van Hees and Rapp, 

Nucl. Phys. A 806, 339 

(2008); 

 Rapp, Adv. High Energy 

Phys. 2013 148253 

(2013) 



Summary and outlook 

 Low-mass dielectron excess observed in a broad energy range 

 Confirmed by different experiments (STAR, PHENIX, CERES, NA60, HADES) 

 Current theoretical models reproduce the measurements (within the given 
precision) by dominantly introducing a broadening of the  spectral function as 
the system approaches the critical temperature 

 To do list: 

 Precise determination of the charm contribution 

 Higher precision (statistics) to discriminate between the models 

 Test the models at lower temperatures and higher baryon densities 

 Outlook: 

 STAR upgrade and BES II (2018 - ) 

 ALICE upgrade (2020 - ) 

 MPD@NICA (2019?) 

 FAIR (2022?) 

 JPARC – Heavy  ion program?  
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Why heavy ion collisions? 
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Evolution of Universe 

Evolution of a heavy-ion collision 
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Evolution of Universe 

Evolution of a heavy-ion collision 



The reference systems: d+Au collisions 

 PHENIX 

d+Au 

collisions at 

√sNN=200  

GeV 

(example) 
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Data consistent with the cocktail within the uncertainties  no 

excess or suppression at any invariant mass  no considerable cold 

nuclear matter effect in dielectron channel 

 PHENIX PRC 91, 014907 (2015) 



Simulating charm contributions in PHENIX 

 Uncertainty in the cross-section and shape depending on 

MC@NLO or PYTHIA: 

 The cross-sections extracted from fit to dielectrons in d+Au in the 

intermediate mass region – both models decribe the data well (PRC 91, 

014907 (2015)) 

• The two models differ in 

extrapolation to lower invariant 

masses caused by their different  

charm pt and opening angle 

distributions 

• The difference is more significant in 

Au+Au collisions where cc and bb 

contributions scale with Ncoll while the 

other contributions scale with Npart 
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Dielectron measurements from ALICE 

 Preliminary results in p+p and p+Pb 

 In Pb+Pb very low S/B and high hadron contamination prevent precise 

          signal extraction  

p+Pb 

Pb+Pb 
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Comparison to model (PHENIX): 

centrality dependence 

 Centrality dependence of the Rapp model consistent with the data 

mee = 0.3-0.76 GeV/c2 

Model yield 

scales with: 

 

(dNch/dy)1.45 

 

(R. Rapp) 
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PHENIX PRC 93, 014904 (2016) 



Comparison to models 

(STAR vs. Rapp and PHSD) 
STAR, PRC 92, 24912 (2015) 

 Centrality and 

transverse 

momentum 

dependence well 

described 

 Precision 

measurements 

needed to 

discriminate 

between the 

models 

Au+Au at √sNN=200 GeV 
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Centrality dependence Momentum dependence 



More about Rapp’s model 

 In the LMR the spectral function is dominated by vector mesons,  in 
particular. The latest model includes non-perturbative QCD EoS and QGP 
emission (qq annihilation at T>Tc) based on lattice QCD 

 Dilepton rates calculated by integration of the thermal rates over the 
space-time evolution of the fireball 

 Successfully describes data from SPS to RHIC energies: the broadening 
(melting) originates mainly from the hadronic phase (+- 

e+e-), when 
the phase boundary is approached, while the contribution from the QGP 
(qq annihilation) is small. 

 The model is able to extract the total fireball life-time from the LMR excess 
yields and the early temperature from the IMR slopes. 

 The model is compatible with (the approach) to chiral symmetry restoration, 
for which a suggested mechanism is broadening of both and a1, with the 
accompanied drop of a1 spectral function towards the mass as the system 
approaches the critical temperature. 
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Alternative approaches to explain the low 

mass enhancement? 

 Shown models are robust in explaining the enhancement, however… 

 The uncertainties of experiments and models are quite large, do 

they leave room for other/additional inputs? 

 A suggestion to explain (a part of) low mass dilepton excess 

(arXiv:1211.1166): 

 Drop of ’ mass in nuclear medium? 

 Radial flow – boosts low pT part of the spectrum? 

 ’ chain decays to other mesons?  

 The best confirmation would require direct ’ observation – challenging! 
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JPARC–E16 experiment 

 The goal: precise measurement of the LVM spectral function in 

nuclear matter 

 KEK-PS result (R. Muto et al., PRL 98(2007) 042501) 
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In-medium 

decay? 

The proposed E16 experiment 

to: 

• boost the statistics x100 

• to double the resolution 

 Allow mass separation 



In-medium  from PHENIX 

 ->ee from d+Au collision at 200 GeV 

Is it understood? 

 PHENIX PRC 91, 014907 (2015) 
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In-medium  from STAR 

 ->ee in Au+Au collisions at 200 GeV 

 Hints of spectral shape modification? 

arXiv:1503.04217 
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