Heavy flavour measurements by the ALICE experiment at LHC

Róbert Vértesi (Wigner RCP, Budapest) for the ALICE Collaboration

vertesi.robert@wigner.mta.hu

Hungarian Academy of Sciences Wigner Research Centre for Physics

R. Vértesi - Heavy Flavour in ALICE

The Quark Gluon Plasma

Heavy-ion collisions are hot and dense enough to deconfine quarks!

- Theory expectations: gas-like material where quarks roam freely
- Experimental findings: a nearly perfect fluid of quarks! → sQGP
 - strongly coupled
 - extremely low viscosity

R. Vértesi - Heavy Flavour in ALICE

sQGP: experimental approaches

"Hard" probes

- few particles with high momenta
- produced in the early stages
- penetrate the plasma
- Modification in the medium

 $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dy}{dN_{pp}/dy}$

R. Vértesi - Heavy Flavour in ALICE

sQGP: experimental approaches

"Hard" probes

- few particles with high momenta
- produced in the early stages
- penetrate the plasma
- Modification in the medium

 $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dy}{dN_{pp}/dy}$

"Soft" processes

- Many particles with low momenta
- Information from late stages
- Collective dynamics ("flow")

 $\frac{dN}{d\phi} \sim 2v_2 \cos\left(2\left(\phi - \phi_{RP}\right)\right)$

Thermal behaviour ...

R. Vértesi - Heavy Flavour in ALICE

Heavy-flavour (HF) probes

- $\tau_{c,b} \sim \frac{1}{2} m_{c,b} \sim 0.1 \text{ fm} << \tau_{QGP} \sim 5-10 \text{ fm}$
- Heavy quarks are (almost) conserved

 $m >> \Lambda (m_c \sim 1.5 \text{ GeV}, m_b \sim 5 \text{ GeV})$

- No flavour changing
- Negligible thermal production
- \rightarrow Very little production or destruction in the sQGP

R. Vértesi - Heavy Flavour in ALICE

Heavy-flavour (HF) probes

- Heavy quarks are produced early $\tau_{c\,b} \sim \frac{1}{2} m_{c,b} \sim 0.1 \text{ fm} << \tau_{OGP} \sim 5\text{--}10 \text{ fm}$

Heavy quarks are (almost) conserved

 $m >> \Lambda (m_c \sim 1.5 \text{ GeV}, m_b \sim 5 \text{ GeV})$

- No flavour changing
- Negligible thermal production
- \rightarrow Very little production or destruction in the sQGP

Transport through the whole system

- Kinematical properties changed within the sQGP: collisional and radiative energy loss
- Access to transport properties of the system
- ...down to low momenta
- Heavy vs. light? Charm vs. bottom?

R. Vértesi - Heavy Flavour in ALICE

Heavy-flavour (HF) probes

Heavy quarks are produced early

 $\tau_{c,b} \sim \frac{1\!\!\!/_2}{2} \ m_{c,b} \sim 0.1 \ fm << \tau_{QGP} \sim 5\text{--}10 \ fm$

Heavy quarks are (almost) conserved

 $m >> \Lambda (m_c \sim 1.5 \text{ GeV}, m_b \sim 5 \text{ GeV})$

- No flavour changing
- Negligible thermal production
- \rightarrow Very little production or destruction in the sQGP
- Transport through the whole system
 - Kinematical properties changed within the sQGP: collisional and radiative energy loss
 - Access to transport properties of the system
 - ...down to low momenta
 - Heavy vs. light? Charm vs. bottom?

Penetrating probes down to low momenta!

R. Vértesi - Heavy Flavour in ALICE

Systems and processes

pp collisions: Reference system and pQCD benchmark

p-A collisions: Understand cold nuclear matter (CNM) effects

• A-A collisions: Hot medium effects (in addition)

√s /2

√s /2

Systems and processes

- ALICE 9
- **pp collisions**: Reference system and pQCD benchmark
 - Investigate production mechanisms
 - LO: q-q annihilation, g-g fusion
 - NLO: gluon splitting
 - Multi-parton interactions

- PDF modification: (anti)shadowing, gluon saturation
- Energy loss in CNM, k_T-broadening
- A-A collisions: Hot medium effects (in addition)
 - Parton energy loss \rightarrow nuclear modification R_{AA}
 - Radiative versus collisional?
 - Expected ordering by mass: $\Delta E_{g} > \Delta E_{q} > \Delta E_{c} > \Delta E_{b} \rightarrow R_{AA}^{h} < R_{AA}^{D} < R_{AA}^{B}$
 - Collectivity \rightarrow asymuthal anisotropy v_2
 - Dynamics; rescattering?
 - Thermalization of heavy flavours?

R. Vértesi - Heavy Flavour in ALICE

- Indirect semi-leptonic decays
 - higher branching ratio, easier trigger
 - a mixture of *c*, *b* contributions
 - \rightarrow b can be isolated via displaced electrons

R. Vértesi - Heavy Flavour in ALICE

- Indirect semi-leptonic decays
 - higher branching ratio, easier trigger
 - a mixture of c, b contributions
 - \rightarrow b can be isolated via displaced electrons
- Direct reconstruction of hadronic decays
 - Access to kinematics
 - High background (→ secondary vertex)

R. Vértesi - Heavy Flavour in ALICE

- Indirect semi-leptonic decays
 - higher branching ratio, easier trigger
 - a mixture of c, b contributions
 - \rightarrow b can be isolated via displaced electrons
- Direct reconstruction of hadronic decays
 - Access to kinematics
 - High background (→ secondary vertex)
- Non-prompt J/ψ reconstruction
 - Selective to decays of B
 - Secondary vertex reconstuction needed

R. Vértesi - Heavy Flavour in ALICE

- Indirect semi-leptonic decays
 - higher branching ratio, easier trigger
 - a mixture of c, b contributions
 - \rightarrow b can be isolated via displaced electrons
- Direct reconstruction of hadronic decays
 - Access to kinematics
 - High background (→ secondary vertex)
- Non-prompt J/ψ reconstruction
 - Selective to decays of B
 - Secondary vertex reconstuction needed
- Full jet reconstruction: D in jets, b-tagging
 - Insight to fragmentation properties
 - Tag via secondary vertex or impact parameter

R. Vértesi - Heavy Flavour in ALICE

ALICE

A dedicated heavy-ion experiment at the LHC

R. Vértesi - Heavy Flavour in ALICE

ALICE

A dedicated heavy-ion experiment at the LHC

Zimányi School, Dec. 2016 R

R. Vértesi - Heavy Flavour in ALICE

pp collisions learning about pQCD

R. Vértesi - Heavy Flavour in ALICE

D⁰ mesons vs. pQCD calculations

Calibration of HF models: x-section vs. \sqrt{s}

8

ALICE

- ALICE data from D⁰ fits in world data trend
- pQCD models give adequate description with sizeable uncertanties

R. Vértesi - Heavy Flavour in ALICE

D⁰ mesons vs. pQCD calculations

Calibration of HF models: x-section vs. \sqrt{s}

- ALICE data from D⁰ fits in world data trend
- pQCD models give adequate description with sizeable uncertanties

- Vertex reconstruction helps at higher p_T
- Very low p_T: only PID, no topological cuts

R. Vértesi - Heavy Flavour in ALICE

D⁰ mesons vs. pQCD calculations

Calibration of HF models: x-section vs. \sqrt{s}

- ALICE data from D⁰ fits in world data trend
- pQCD models give adequate description with sizeable uncertanties

- Vertex reconstruction helps at higher p_T
- Very low p_T: only PID, no topological cuts

Agreement with pQCD models

FONLL: JHEP0407 (2004) 033 GM-VFNS: EPJ C72 (2012) 2082 LO k_T-fact.: PRD 87 (2013) 094022

R. Vértesi - Heavy Flavour in ALICE

ALICE

HF electrons vs. calculations

 FONLL pQCD provides good description over a wide p_T range

R. Vértesi - Heavy Flavour in ALICE

HF electrons vs. calculations

description over a wide p_{T} range

.ICE

8

Both for beauty and charm

R. Vértesi - Heavy Flavour in ALICE

Production vs. event activity

Production of D mesons increases steeper than linear with multiplicity

R. Vértesi - Heavy Flavour in ALICE

Production vs. event activity

- Production of D mesons increases steeper than linear with multiplicity
- Same trend in **non-prompt** ($B \rightarrow$)J/ Ψ as well as **prompt** J/ Ψ yields
 - \rightarrow No strong flavor dependence
 - \rightarrow Charm production appears to be independent of hadronization!
- Understanding: multiple parton interactions

p-A collisions cold nuclear matter effects

R. Vértesi - Heavy Flavour in ALICE

D mesons in p-Pb collisions

- Nuclear modification is moderate in p-Pb collisions
- No indication of CNM effects from intermediate to high p_{T}
- Data described by models containing initial-state and CNM effects
- Hot quark matter in a small volume cannot be excluded
 - Scenarios involving more than 20% nuclear modification are unlikely

R. Vértesi - Heavy Flavour in ALICE

Forward and backward: muons

- Heavy flavour decay muons probe the nPDFs at different x values
- HF decay muon production is consistent with no nuclear modification
 - Hint of an enhancement of backward intermediate- p_T HF decay muons
- Measurements understood by models within uncertainties

A-A collisions hot nuclear matter effects

R. Vértesi - Heavy Flavour in ALICE

D mesons in Pb-Pb collisions

ICE

- Low-p_T: hint of less suppression
 - Trend is not as strong as at RHIC
 - \rightarrow charm-light quark coalescence?

(Note: also less shadowing, steeper pp spectrum, different radial flow at RHIC!)

R. Vértesi - Heavy Flavour in ALICE

D mesons in Pb-Pb collisions

 \rightarrow strong interaction with medium

- Low-p_T: hint of less suppression
 - Trend is not as strong as at RHIC
 - → charm-light quark coalescence?

(Note: also less shadowing, steeper pp spectrum, different radial flow at RHIC!)

- Several models with different ingredients describe the structure!
 - FONLL or NLO production
 - Collisional vs. radiative energy loss
- Hydro vs. Glauber
- Different fragmentation ...

R. Vértesi - Heavy Flavour in ALICE

ICE

HF electrons in p-Pb and Pb-Pb

- Significant suppression of HF electrons from intermediate p_T upwards
 - Note: (c,b)→e production in p-Pb collisions consistent with unity
- Separated beauty-decay electrons hint a weaker suppression

R. Vértesi - Heavy Flavour in ALICE

HF electrons in Pb-Pb - models

• Significant suppression of HF electrons from intermediate p_T upwards

- Note: (c,b)→e production in p-Pb collisions consistent with unity
- Separated beauty decay electrons hint a weaker suppression
- Models describe both c and b within uncertainties
 - Difference understood by quark mass dependent energy loss

R. Vértesi - Heavy Flavour in ALICE

ICE

Azimuthal anisotropy

A significant v₂ of HF is observed at the LHC: both D and HFE

- Note: a similar v₂ is measured for heavy-flavor muons, PLB 753 (2016) 41
- Models in which charm picks up flow via recombination or collisional energy loss do better

R. Vértesi - Heavy Flavour in ALICE

Azimuthal anisotropy

A significant v₂ of HF is observed at the LHC: both D and HFE

- Note: a similar v₂ is measured for heavy-flavor muons, PLB 753 (2016) 41
- Models in which charm picks up flow via recombination or collisional energy loss do better

 R_{AA} and v_2 together provide strong constraints on models

R. Vértesi - Heavy Flavour in ALICE

35

ICE

D-meson suppression vs. N_{part}

D-meson suppression at high p_T consistent with pions
 Understanding: different fragmentation levels out expected ordering

R. Vértesi - Heavy Flavour in ALICE

Non-prompt J/ψ suppression

- D-meson suppression at high p_T consistent with pions
 Understanding: different fragmentation levels out expected ordering
- $B \rightarrow J/\psi$ suppression at high p_T is weaker (note the y range)

R. Vértesi - Heavy Flavour in ALICE

Non-prompt J/ψ suppression

D-meson suppression at high p_T consistent with pions
 Understanding: different fragmentation levels out expected ordering

B→J/ψ suppression at high p_T is weaker (note the y range)
 Model understanding: different parton masses cause different energy loss in similar kinematic range

Summary

Heavy flavour in pp collisions

- pQCD models give adequate description of HF production vs. p_{T}
- Stronger-than linear event activity dependence observed; understood as an effect of multiple parton interactions

Summary

Heavy flavour in pp collisions

- pQCD models give adequate description of HF production vs. p_{T}
- Stronger-than linear event activity dependence observed; understood as an effect of multiple parton interactions

Cold nuclear matter effects

- Nuclear modification is moderate in p-Pb collisions
- Forward-backward: different initial/CNM effects; model selectivity
- Whether p-Pb is entirely cold still remains a question

Summary

Heavy flavour in pp collisions

- pQCD models give adequate description of HF production vs. p_{T}
- Stronger-than linear event activity dependence observed; understood as an effect of multiple parton interactions

Cold nuclear matter effects

- Nuclear modification is moderate in p-Pb collisions
- Forward-backward: different initial/CNM effects; model selectivity
- Whether p-Pb is entirely cold still remains a question

Hot nuclear matter

- High- p_{T} suppression: $R_{AA}^{\pi} \sim R_{AA}^{D}$ (consistent with $\Delta E_{u,d,s} > \Delta E_{c}$)
- Low- p_{T} : coalescence of charm and the flowing medium
 - Lack of detailed understanding: v₂ and R_{AA}?
- Ordering of c, b at intermediate $p_T: R_{AA}^B > R_{AA}^D$

Outlook

LHC in Run-II: a real heavy-flavour factory!

- Higher luminosity
- pp collisions at $\sqrt{s}=5$ to 13 TeV
- p-Pb, Pb-Pb collisions at $\sqrt{s}=5.02$ TeV (ongoing 8.16 TeV p-Pb)
- Precision charm: greater model selectivity
 - Smaller uncertainities, measurements down to $p_T=0$
 - Λ_c : coalescence and hadronization on the HF sector
- Beauty measurements
 - Understanding colour charge / mass effects
 - Full b-tagged jets and D in jets: insight to HF fragmentation

Outlook

LHC in Run-II: a real heavy-flavour factory!

- Higher luminosity
- pp collisions at $\sqrt{s}=5$ to 13 TeV
- p-Pb, Pb-Pb collisions at $\sqrt{s}=5.02$ TeV (ongoing 8.16 TeV p-Pb)
- Precision charm: greater model selectivity
 - Smaller uncertainities, measurements down to $p_T=0$
 - Λ_c : coalescence and hadronization on the HF sector
- Beauty measurements
 - Understanding colour charge / mass effects
 - Full b-tagged jets and D in jets: insight to HF fragmentation

ALICE upgrades: precision beauty measurements

- Detector upgrades: ITS, TPC, readout, Muon Forward Tracker
- Goal: 2 orders of magnitude gain in luminosity w.r.t. Run-I

Thank you!

対象が立

The Danube

R. Vértesi - Heavy Flavour in ALICE

Multi-parton interactions?

- Steeper-than linear increase
 - in D meson yields vs. multiplicity
- No strong flavour-dependence
 - Non-prompt J/ψ follows D trend
- Universal trend
 - RHIC 500 GeV up to LHC 7 TeV
 - Prompt J/ ψ follows the same trend
 - \rightarrow Charm production appears independent of hadronization!
- Models that include multi-parton interactions tend to describe it
 - Percolation: qualitative agreement
 - EPOS+Hydro gets trend right
 - PYTHIA8: acceptable description

R. Vértesi - Heavy Flavour in ALICE

45

ALICE

D mesons in p-Pb vs., centralities

- Nuclear modification is moderate in p-Pb in all centrality classes
- No indication of CNM effects at intermediate to high p_{T}

Zimányi School, Dec. 2016 R. Vértesi - Heavy Flavour in ALICE DS mesons in Pb-Pb collisions

46

ALICE

- Indication of less D^s suppression than that of D
- Consistent with stronger strange-charm coalescence

R. Vértesi - Heavy Flavour in ALICE

Full B-jet reconstruction (CMS)

- Very high p_T : similar inclusive and b-jet suppression
- Colour charge effects? Contribution of gluon splitting?

 \rightarrow Future precise measurements towards lower p_{T}

Probability density

R. Vértesi - Heavy Flavour in ALICE

b-jet tagging performance

