

Heavy quark jets in heavy-ions

Matthew Nguyen Laboratoire Leprince-Ringuet (CNRS) Ecole Polytechnique December 5th, 2016

Jets

- Collimated spray of hadrons
- Precisely calculated in pQCD
- "Reconstruct" parton kinematics via jet clustering

Jet quenching

Cartoon from C.Manuel, PRL Viewpoint: "The stopping power of hot nuclear matter"

- What happens when a hard scattering is embedded in a QGP?
- Partons lose energy
- Recoiling partons may lose energy differently
 - o Path length difference
 - o E-loss fluctuations

Jet quenching @ the LHC

+ much more: jet fragmentation, shapes, substructure, etc. see my review talk at QM15: https://indico.cern.ch/event/355454/contributions/838380/

Heavy quark energy loss

- Interest is two-fold
 - 1) Quark vs gluon e-loss
 - Mass effect: radiation damping in "dead cone
- Heavy quark jets vs. hadrons
 - Higher detection efficiency
 - Typically larger energies
 - Potentially more information

Properties of b-quark jets

- Large decay multiplicity, $\langle n_{ch} \rangle \sim 5$
- Long-lived hadrons cτ ~ 500 μm → mm – cm displacement in lab frame
- Tend to decay semi-leptonically (20% for µ and e)
- Fragment hard, $\langle z_B \rangle \sim 0.7 0.8$

 $\langle x_B^{\rm wd} \rangle = 0.7163 \pm 0.0061 \, (\text{stat}) \pm 0.0056 \, (\text{syst})$

- b-jet definition: Any jet which contains a b-hadron
- Lifetime methods: Exploit displaced vertices and/or tracks, both b-hadron and subsequent c-hadron decays
- Soft-lepton tagging: μ or e inside the jet

b-tagging in pp @ 7 TeV

CITS

General strategy:

JHEP 1204 (2012) 084

- 1) Select reasonably large flight distance vertices $(w/ \ge 2 \text{ or } \ge 3 \text{ tracks})$
- 2) Template fit on SV mass or lepton p_T relative to jet axis

Review of Run 1 b-tagging methods in CMS: JINST 8 (2013) P04013

JHEP 1204 (2012) 084

5/12/2016

CNIS

b-tagging in PbPb (Run 1)

b-tagging efficiency reduced, but c-jet rejection fixed (wrt pp)

PRL 113 (2014) 132301

Despite larger light jet background, fit works remarkably well!

b-jet x-section & R_{AA}

- Unfolded jet spectra for several centrality selections and pp
- Suppression of ~ 2x, compatible w/ pQCD model expectations

b-jet vs. inclusive jet quenching

- Similar b-jet and inclusive modification in PbPb, within still large errors
 - Inclusive jets dominated by gluons \bigcirc
 - b jets should tag quarks, but sizable contribution from gluon splitting
- pPb measurements consistent w/ no nuclear effect (w/ large errors) 5/12/2016 Matthew.Nguyen@cern.ch

ALICE is also in the game

Performance of the ALICE secondary vertex b-tagging algorithm

G. Eyyubova^{1,2,a} and L. Kramárik^{1,b} on behalf of the ALICE collaboration

arXiv:1605.00143

¹ FNSPE, Czech Technical University in Prague ² SINP MSU, Russia

What about charm jets?

c-jet tagging in pA

Matthew.Nguyen@cern.ch

State of the art flavor tagging

"Identification of b quark jets Run 2" BTV-15-001 "Identification of c-quark jets" BTV-16-001

- Combined secondary vertex (CSV) uses a larger number of variables, SV mass, SV p_T, # of tracks, etc. in a multivariate estimator
- Most recent iterations based on Boosted Decision Trees

Heavy flavor production

Performance for b-dijets

Using (Run 1) Combined Secondary Vertex

Centrality dependence can be mitigated by dedicated optimization of tagger for different centrality classes (ongoing...)

Process contribution to dijets

- Pythia 6 gives a satisfactory description of dijet p_T and angular correlations*
- After selection, flavor creation dominates (70 80 %)
- Pythia 8 turned out to give too imbalanced dijets overall (not just b-jets)
- Investigating higher order generators (MadGraph/aMC@NLO, Powheg, etc.)

*Pythia6 did not behave like this "out of the box". This was an interesting, but technical story, I can come to at the end it you're interested.

$\Delta \phi$ correlations

 $p_{T,1} > 100 \text{ GeV}$ $p_{T,2} > 40 \text{ GeV}$ $|\eta| < 1.6$

Centrality 0 - 10 %

(b)-dijet imbalance

 $p_{T,1} > 100 \text{ GeV}$ $p_{T,2} > 40 \text{ GeV}$ $\Delta \phi > 2\pi/3$ $|\eta| < 1.6$

Centrality 0 - 10 %

First measurement of b-bbar correlations in heavy ions! To the extent we can say so far, b-jet imbalance looks like inclusive jet

Mean p_T imbalance

 $p_{T,1} > 100 \text{ GeV}$ $p_{T,2} > 40 \text{ GeV}$ $\Delta \phi > 2\pi/3$ $|\eta| < 1.6$

No difference between inclusive and b-dijets so far... We're working to beat down uncertainties

pA data @ 8 TeV

CMS Integrated Luminosity, pPb, 2016, $\sqrt{s}=$ 8.16 TeV/nucleon

CMS recorded 185 nb⁻¹, > 5x the data sampled in 2013 @ 5 TeV! We also collected more than 1 billion MB events at 5 TeV

t-tbar event in pPb @ 8 TeV

91 GeV isolated electron

104 GeV b-jet

CMS Experiment at the LHC, CERN Data recorded: 2016-Nov-19 06:44:18.053352 GMT Run / Event / LS: 285517 / 2067670785 / 1459

87 GeV b-jet w/ 14 GeV muon 49 GeV missing E_T 88 GeV isolated muon 5/12/2016 Matthew.Nguyen@cern.ch

CNrs

4-layer pixel upgrade

Will be very interesting to see what improvement this gives for heavy ions

Conclusion / Outlook

- LHC Run 1: b-jet ID was demonstrated in AA
- b-jet spectra measured in pp, pA, AA
- So far no difference in R_{AA} wrt inclusive jets
- c-jet identification also demonstrated in pp, pA
- 1st Run 2 measurement: b-bbar dijet imbalance
- Plenty of prospects w/ Run 2 data and beyond

Wanna join the fun?

Or know someone who might?

We're hiring @ Ecole Polytechnique!

Looking for a post-doc http://inspirehep.net/record/1498804

And a PhD student http://llr.in2p3.fr/IMG/pdf/cms_llr_qgp.pdf

to work on heavy flavor jet measurements (and more!)

Backup

Flavor process reweighting

Idea: Divide 3-jet events into 3 classes, each sensitive to a different process 1) Two highest p_T jets are b-tagged and back-to-back ($\Delta \phi_{1,2} > 2\pi/3$) 2) 1st and 3rd highest p_T jets b-tagged and back-to-back ($\Delta \phi_{1,3} > 2\pi/3$)

3) 1st and 3rd highest p_T jets are b-tagged and nearby ($\Delta \phi_{1,3} < \pi/3$)

Category	FCR	FEX	GSP	Category	MC	Data
Δφ _{1,2} >2π/3	57%	26%	17%	Δφ _{1,2} >2π/3	46%	56%
Δφ _{1,3} >2π/3	11%	62%	27%	Δφ _{1,3} >2π/3	49%	37%
 Δ φ _{1,3} <π/3	0%	17%	83%	 Δφ _{1,3} <π/3	5%	7%

Effect of reweighting

- Result: FCR fraction in analysis selection 50% \rightarrow 70%
- Pythia overestimates the FEX contribution to back-to-back topologies.
- After reweighting same data/Pythia agreement as for inclusive jets
- Similar conclusion in CDF PRD71 (2005) 092001

31

Beyond inclusive b-jet spectra

Merged jet ID

Double b-tagged dijets

- Identifiable w/ jet substructure methods
- Also useful for q/g separation
- Never been tried in heavy ions

- LO-like production, i.e., reduced gluon splitting
- Small systematics, can be compared to inclusive jets w/ high precision
- High purity, but low efficiency and x-section

Angular dependence of gluon splitting

- Tend to give 3-jet topology
- More b-jet-like w.r.t. e-loss
- Soft splitting
 - $\circ\,$ May be clustered as a single jet
 - $\circ\,$ More gluon-like w.r.t. e-loss

32

- Smooth variation between topologies
- Nearby jets merged
- Some GSP back-to-back
- ▲ Pythia poorly describes angular dependence

Likelihood output

b-jet efficiency

Merged jets can be tagged via their substructure Variables used by ATLAS:

- 1) Jet track multiplicity
- 2) Jet width
- 3) ΔR between k_T subjets

Possible in heavy ions? Also interesting for q/g discrimination

Dead cones

Vacuum:

Heavy quark multiplicity calculated in MLLA+LPHD $\delta_{bl} = N_b^{ch} - N_l^{ch} = 3.12 \pm 0.14$ Dokshitzer, et al EPJC 45 (2006) 387-4001

In medium:

- Suppression of induced radiation [1]
- Finite size effects [2]
- Interference effects → radiation fills cone [3]

[1] Dokshitzer, Kharzeev
<u>PLB 519 (2001) 199-206</u>
[2] Aurenche, Zakharov
<u>JETP Lett. 90 (2009) 237-243</u>
[3] Armesto, Salgado, Wiedemann
PRD 69 (2004) 114003

IP Resolution

