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Description of the strongly interacting matter

Goal describe thermodynamics of strongly interacting matter.
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(J.0. Andersen et.al. 2014)

@ at high energy scales (hight temperature): asymptotic
freedom = perturbative QCD; from T > 200 — 250 MeV
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0

T (MeV)
(T.S. Birs, A.J. 2014)

@ at high energy scales (hight temperature): asymptotic
freedom = perturbative QCD; from T > 200 — 250 MeV

@ at low energy scales (low temperature): bound states are
formed (hadrons) which interact "weakly” = perturbative
hadron gas (HRG) description; up to T <170 MeV

Zimanyi School’'16 16. Zimanyi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 5. - Dec. 9., Budapest, Hungary 4 /23



Phase transition regime

at T ~ 156 MeV (crossover) phase transition

Width of the phase transition regime
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(A. Bazazov et.al. 2013) (A. Bazazov et.al. 2014)

150 < T < 250 MeV regime:
non-quasiparticle regime, changing degrees of freedom

nonperturbative, advanced methods are needed
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Questions we address

@ How can we describe changing degrees of freedom?
@ Where is the CEP in the u — T plane?
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© Changing degrees of freedom
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Two particles with the same quantum numbers

same quantum number =- only their mass can differ!

What do we observe in a mass spectrometer?

spectrum of two particles @ ideally: 2 thin spectral lines
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Two particles with the same quantum numbers

same quantum number =- only their mass can differ!

What do we observe in a mass spectrometer?

spectrum of two particles @ ideally: 2 thin spectral lines

/ \ @ realistic: broadened 2 spectral lines
i

@ widht ~ mass difference:

| \‘ no measurements can resolve the

| \ peak structure!

the sates become indistinguishable
= represent 1 dof
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Two particles with the same quantum numbers

same quantum number =- only their mass can differ!

What do we observe in a mass spectrometer?

spectrum of two particles @ ideally: 2 thin spectral lines

@ realistic: broadened 2 spectral lines

@ widht ~ mass difference:
no measurements can resolve the
peak structure!

v the sates become indistinguishable
= represent 1 dof

| @ changing width
JUL = changing degr. of freedom!

E E

4

thermodynamic definition of # dof: P = NP,
P full pressure, Py one-particle pressure
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Thermodynamics from spectral function

Goal: calculate pressure P(p)

(T.S. Biro, A.J. and Zs. Schram 2016; T.S. Biro and A.J. 2014; AJ. 2012,2013)
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Thermodynamics from spectral function

Goal: calculate pressure P(p)

(T.S. Biro, A.J. and Zs. Schram 2016; T.S. Biro and A.J. 2014; AJ. 2012,2013)

Strategy

e represent o with a (quadratic) effective model

@ calculate thermodynamics from this theory
energy density € = %Tr e " Tyo, use KMS relation
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Thermodynamics from spectral function

Goal: calculate pressure P(p)

(T.S. Biro, A.J. and Zs. Schram 2016; T.S. Biro and A.J. 2014; AJ. 2012,2013)

Strategy

e represent o with a (quadratic) effective model

@ calculate thermodynamics from this theory
energy density € = %Tr e PH Too, use KMS relation

Pressure as a function of the spectral function

4
P = :,:T/(dq S In(1F e*ﬁq") 0(q), 0 = Discik™!

@ consistency check: for free gas mixture with masses m; we
obtain P = 3", Py(m;): sum of one-particle partial pressures;

e generally nonlinear ¢ dependence (because K depends on o)
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Changing degrees of freedom for two particles

How thermodynamics changes when peaks are merged?
12

continuum
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@ spectrum for two particles with different width, and a typical
multiparticle continuum (non-quasiparticle system)

Zimanyi School’'16 16. Zimanyi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 5. - Dec. 9., Budapest, Hungary 10 /23



Changing degrees of freedom for two particles

How thermodynamics changes when peaks are merged?
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@ spectrum for two particles with different width, and a typical

multiparticle continuum (non-quasiparticle system)
o at small width = two-particle energy density
o at large width =~ one-particle energy density

@ continuum: practically negligible energy density contibution
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Effective number of degrees of freedom N

merging peaks, Negg —1 = indistinguihability
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Effective number of degrees of freedom N

indistinguihability

merging peaks, Neg -1 =
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Effective number of degrees of freedom N

merging peaks, N —1 = indistinguihability
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good fitting function: Nes = Ny + Nle‘”b (typically b =1.5 — 2)
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Application to QCD

Simple Ansatz: | P = N p, 0 + NP pocp

(T.S. Biro, A.J. and Zs. Schram 2016; T.S. Biro and A.J. 2014)

@ hadrons: Hagedorn spectrum; common, T-dependent width

@ partons: N QGP depends on the density of hadrons!

Zimanyi School’'16 16. Zimanyi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 5. - Dec. 9., Budapest, Hungary 12 /23



Application to QCD

Simple Ansatz: |P = Ng;fdr) Phaar + Négcp) Pocp

(T.S. Biro, A.J. and Zs. Schram 2016; T.S. Biro and A.J. 2014)

@ hadrons: Hagedorn spectrum; common, T-dependent width

@ partons: N QGP depends on the density of hadrons!

QCD partial pressures

5

@ total pressure is well reproduced

4f ] @ width of melting interval is
2|l ] tunable
& Sl @ hadrons do not vanish at T.:
they just start to melt there.
dl ) @ quarks just start to appear at T,
o=

0 100 200 300 400 500 600 700 800
T (MeV)
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© Position of the Critical EndPoint (CEP)

o & = = ZEl= ¥
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MC calculation of phase diagram

Formula to compute on lattice:

Tre AH-1N)H — %/DU e % (det M(u)) O[U]

where
@ S, gauge action

o Se(p) = [d*xW(D,y, + m— o)V = [ d*xWM(u)V
fermionic action with chemical potential

Problem (sign problem): det M(u) is not real!
Y M(—p)rs = Mi(p) = | det M* () = det M(—p). |

Consequence: e~ %[Uldet M(y) is not a probability measure

= No importance sampling!
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Solutions: Reweighting

Idea: generate configurtions at T/ # T and = 0, and use them
to calculate the finite u case:

Tr e~ BH-nN) _ / DU e > (det M(B, ) =

(8, 1))
e=%(#)(det M(f',0))

/eSO (det M(B, )
- <e—5g<ﬂ’><detM(ﬂ',0))

e~ %% (det M(B',0)) =

B / e %(9) (det M

Z(B',p=0).

The phase diagram

critical endpoint 165 [T T

E ‘\quark-gluon plasma
(Z. Fodor, S. Katz, 2001, 2004) F """"’w,,,’

164 - x.
Te =162+ 2MeV, F
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y
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How reliable is this result?

Radius of convergence of rescaling (de Forcrand 2010)

@ rescaling: ratio of two partition functions with energy difference
20) _ pvas
Z(0)
=- overlap exponentially vanishes for large volumes
Statistics grows with \/Ny., = exponentially large
number of steps are required in the thermodynamic limit

@ characterization of sign problem: isospin chemical potential

: det2/\/l(,u) 2 X 2
20\ _ ~ HH ~ pTH
(e*®) < et M(0) P e = # config. ~ """,

@ At imaginary u/ T = it/3 Roberge-Weiss phase transition
= restrict radius of convergence
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How reliable is this result?

Radius of convergence of rescaling (de Forcrand 2010)

@ rescaling: ratio of two partition functions with energy difference
20) _ pvas
Z(0)
=- overlap exponentially vanishes for large volumes
Statistics grows with \/Ny., = exponentially large
number of steps are required in the thermodynamic limit

@ characterization of sign problem: isospin chemical potential

: det2/\/l(,u) 2 X 2
20\ _ ~ HH ~ pTH
(e*®) < et M(0) P e = # config. ~ """,

@ At imaginary u/ T = it/3 Roberge-Weiss phase transition
= restrict radius of convergence

MC methods are reliable for M?B =u<T

~
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Latest MC results

(Bellwied et.al (BMW group) 2015)

e Imaginary up calculation (no sign problem)
@ Taylor expand results in @ and continue to real axis

T ‘ T ‘ T T T T T T T
042 |18 =000T s lattice; 48%x12 |
_ . %2/Ngor=0.5
2 150 eehes | ©
b by present £ o1
~ analysis S .
g T#u) / w
2 100 — = o008/
o widening,/uncertainty z
@ due to higher order terms Y
a o
E 50 - < 006
= é
. I . I . 0.04 1
200 400 -30 -20 -10 0 10 20
Baryonic chemical potential (MeV) (T-To) W(w)/W(0) [MeV]

@ left panel: radius of convergence

@ right panel: for all ug the susceptibility curves can be scaled
to each other = analytic
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Latest MC results

(Bellwied et.al (BMW group) 2015)

e Imaginary up calculation (no sign problem)
@ Taylor expand results in @ and continue to real axis

T ‘ T ‘ T T T T T T T
042 |18 =000T s lattice; 48%x12 |

_ . %2/Ngor=0.5
2 150 eehes | ©
b by present £ o1
~ analysis S .
e TH(u) / -3
2 100 — = o008/
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@ due to higher order terms Y
a o
E 50 - < 006
= é

. I . I . 0.04 1

200 400 -30 -20 -10 0 10 20
Baryonic chemical potential (MeV) (T-To) W(w)/W(0) [MeV]

Consequence
no sign of a phase transition until ug < 400 MeV!
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@ Searching the CEP with analytic tools

o & = = ZEl= ¥
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Semianalytic method

(cf. P. Kovécs dissertation)

@ CEP found at nonphysical pion mass, not at cont. limit.

@ one-parameter scaling hypothesis: assume that one
parameter determines the extrapolation to physical point
choose AT(x) width of the susceptibility curve

1200

1000 e @ [icEP VS AT(X,[L = 0) model
a0 calculations fits to numerical data
>
- . (Fodor, Katz 2001, 2004).
& a’x’, a=493.3,b=02 ——

@ Phyiscal point at ¢ = 0: width of
susc. curve is AT (x) ~ 28 MeV

(Aoki, Fodor et.al. 2006)

0 5 10 15 20 25 30
AT(y) [MeV]

Prediction: | yicep ~ 1000 MeV
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Resummed perturbation theory

Effective model: chiral sigma model
(A.J, A. Patkés, Zs. Szép, P. Szépfalusy, 2004)

L P e — (22 i &
L=Sp(=d" =m ) — 5 (¢7)" + 9li§ — mq msoT]w
(¢ = (0,7m5), T = (1,iv2N; Tas), N = 4, Nf = 2)
@ 1-loop resummed perturbation theory in large N expansion

o effective potential (free energy) = phase transition at
2 2
g Nr , A g~ Nr 2 2
- T2 =
o2 1T <36 T Mo
= an ellipse in the u — T plane

@ position of the CEP analytically determined
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Resummed perturbation theory

Effective model: chiral sigma model

(A.J, A. Patkés, Zs. Szép, P. Szépfalusy, 2004)

L= % (E-amiR) CEP from large N expansion

(p=(0.m), T=(L,iv2

@ 1-loop resummed p

o effective potential ( 3
g2Nr .
272
= an ellipse in

@ position of the CEF

140

120 -

100 -

80 -

60 -

40 +

20 -

A=400

---- 2" order line

— 1%t order line

- spinodal

0 . . . . . .
0 100 200 300 400 500 600 700 800 900 1000

g [MeV]

Prediction: | yicep ~ 850 MeV
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ther analytic models, role of bosonic fluctuations
QM la N with bosonic fluctuations

140 e =
120 - T %=400
100 =
S 80t h
[0
=)
= 60
40 -
---- 2" order line
20 1 — 1t order line
~- spinodal ‘
0 100 200 300 400 500 600 700 800 900 1000
ug [MeV]
(A.J, A. Patkés, Zs. Szép, P. Szépfalusy, 2004)

v

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.
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Other analytic models, role of bosonic fluctuations

chiral sigma model with/without Polyakov loops

T [MeV]

250

200

150

100

50

e CEP
—==—= y crossover
— y first order

®,P crossover, )

50 100 150 200 250 300 350
u [MeV]

(B.J Schaefer, M. Wagner, 2011)

T [MeV]

250

200

150

100

50

T \‘\\\
L TN ]
e CEP .
| ---- xcrossover SN |
——  first order N
. ®,® crossover, )
0 50 100 150 200 250 300 350

u [MeV]

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.
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Other analytic models, role of bosonic fluctuations

with /without Polyakov loops

. 200,
012~ =me_ CEP ~ (0.11,0.14)GeV % Nambu
..... " 777 X wigner
0.10- Chiral symmetry restored 150 b
> 0.08] . 1 E
o, 0.06 Chiral symmetry broken 1 2100 _
[ = +—a dressed Polyakov-loop
0.04} | v--v dressed conjugate P.-loop
. 50/~ |* = chiral crossover J
0.02} ] ® chiral CEP
(a) { |=—a chiral first order region
000 : y ; ; : : n | n | n | n
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 00 100 200 300
n[GeV] 1 [MeV]

(Craig D. Roberts et.al. 2010) (Ch.S. Fischer, J. Luecker, J.A. Mueller, 2011)

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.
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Other analytic models, role of bosonic fluctuations
PQM with FRG (full fluctuations)

§ """"" x crossover.&*
100 L G(T-0)2 \
—-—-- & crossover N
50  -—— @ crossover \%
—— x 1st order 3
. s CEP | /
0 50 100 150 200 250 300 350
1 [MeV]
(T.K. Herbst, J.M. Pawlowski, B.J Schaefer, 2013)
v

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.
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0.2 T

M= 284 MeV - - - - -

~ Tl freeze-out —-—-—

~
\

NV E \
256 MeV' 284 MeV

084 086 08 09 092

015
- 0.09
s
8 01f 008
= 007
0.06
005
0.05 1 0,04
0.03
002
0.82
o .
0o o1

(P. Kovdcs, Zs. Szép, Gy. Wolf, 2016)

0.2 03 0.4 0.5 06 0.7 0.8 0.9 1
g [GeV]

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.
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Other analytic models, role o

Vector meson extended PQM

02
e my=284 MeV - - - - -
015 T freeze-out ———
- 0.09
s
8 o1l o008k
= 007 SO
006 NN
0.05 E S
sk 299 MeV CEP
0.04 - 1 (@85527) MeV
0.03 2O MeY 284 Mev El N \
0.02 A
082 084 086 088 09 092 094 N
0 . . A A f . . . .
0 o1 02 03 04 05 06 07 08 09 1
15 [GeV]
(P. Kovdcs, Zs. Szép, Gy. Wolf, 2016)

4

osonic fluctuations

QM: quark-meson, P: Polyakov-loop, DSE: Dyson-Schwinger-eq.

@ correct treatment of bosonic fluctuations are important!

@ analytic methods with fluctuations: ug cep =~ 800 — 1000 MeV
DSE pure QCD approach: pg cep ~ 500 MeV
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© Conclusions
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Conclusions

@ Thermodynamics of strongly interacting matter is perturbative
for T <150 MeV (HRG), and T > 250 MeV (QCD) (at = 0)

@ in the critical domain (analytically) changing dof
= hadron melting
crucial: correct treatment of spectral properties
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Conclusions

@ Thermodynamics of strongly interacting matter is perturbative
for T <150 MeV (HRG), and T > 250 MeV (QCD) (at = 0)

@ in the critical domain (analytically) changing dof
= hadron melting
crucial: correct treatment of spectral properties

@ location of the CEP: direct MC methods g cep > 450 MeV

@ crucial: correct treatement of bosonic fluctuations (direct or
Polyakov loops)

o latest results: ug, cep =~ 800 — 1000 MeV
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Euclidean formalism of QCD

Quantum statistical averages can be computed as
Tre PO = [ DUDVDW =5 OV, U],
the action consists of a fermion and a gauge part S = 5¢ + S;.
@ The fermionic part (with D covariant derivative) :
Sr= [ d**xU(D,y, + mV = [d*xU MV, {v,, 7} =25,
@ The fermionic path integral yields
[ DYDY e=5 = det M

@ This contributes to the gauge action as

| Tre=#10 = [ DU e=St(det M) O[U]|

Consistency: real expression, since (detvs = 1)
wMys = MI = detysMys = det M = det M

Algorithm: produce configurations with probability ~ e=s+Indet M
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Chemical potential

For a conserved quantity N, = [ d*xW,yoW, we can introduce a

chemical potential
e—BH _y g—B(H—pN)

This modifies the fermionic action
Se(n) = [ d*xW(Dyry +m — o)V = [ d*xUM(p)V.

Problem (sign problem): det M(u) is not real!
WM =MI(n) = |det M* (1) = det M(—p).|

Consequence: e %[Uldet M(y) is not a probability measure
= No importance sampling!
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How reliable is this result?

Numerical arguments (de Forcrand 2010)

@ rescaling: ratio of two partition functions with energy difference
Z(p) _ o BVAF
Z(0)
= overlap exponentially vanishes for large volumes
Statistics grows with \/Nge, = exponentially large
number of steps are required in the thermodynamic limit

@ characterization of sign problem: isospin chemical potential u

<e2ie> _ det’ M(p)
| det M(p)|?

Zimanyi School’'16 16. Zimanyi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 5. - Dec. 9., Budapest, Hungary 3/7



How reliable is this result?

Numerical arguments (de Forcrand 2010)
@ rescaling: ratio of two partition functions with energy difference
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V4 Sign problem
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How reliable is this result?

Numerical arguments (de Forcrand 2010)

@ rescaling: ratio of two partition functions with energy difference
Z(p) _ o BVAF
Z(0)
= overlap exponentially vanishes for large volumes
Statistics grows with \/Nge, = exponentially large
number of steps are required in the thermodynamic limit

@ characterization of sign problem: isospin chemical potential u

; det2 ,/\/l(u) 2 . 2
2i0\ ~ o FH ~ oTtH
(e”'®) <|det/\/l(u)|2 e = # config. ~ ™",

o At imaginary u/ T = ir/3 Roberge-Weiss phase transition
= radius of convergence of the overlap to y = 0 case is of
the order u~ T (ie. ug < T).

MC methods are reliable for M?B =u<T

~

Zimanyi School’'16 16. Zimanyi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 5. - Dec. 9., Budapest, Hungary 3/7



CEP at the physical point

The MC determined CEP is not at continuum limit, not at physical
point (large quark masses). ..

P. Kovécs and Zs. Szép had an elegant line of thought to assess
the CEP in the physical point (. p. kovics dissertation)

@ Assume that Z. Fodor et.al. found the CEP
@ one-parameter scaling hypothesis
experience: most sensitive quantity is pion mass m, =
Assume that the value of m, determines the extrapolation to
physical point
@ in effective model calculation determine m.-dependence of
o width of the susceptibility peak AT ()
e position of the CEP (/,LCEP7 TCEP)

o finally determine the AT (x) dependence of the CEP!
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One parameter scaling to continuum limit

Mg, cep(MeAT()) — 1200
Hp,Cep(M=0,AT(1)
1 cep(MpAT(0)=0)
(AT =0)
m Mev] m (AT g cep=0) 0

s e Ll 1000

800 f /

a*x®, a=493.3,b=0.2 ——

— ]
o
S

ng,cep MeV]

AT(x) [MeV]

5 10 15 20 25 30
AT(x) [MeV]

@ Model calculation: AT(x) vs m, approx. linear
® pcep Vs AT(x) fits to numerical data (Fodor, Katz 2001, 2004)

@ At phyiscal point at u = 0 the width of susceptibility curve is
AT(x) =~ 28 MeV (acki, Fodor et.al. 2006)

= Prediction pcgp ~ 1000 MeV
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Melting degrees of freedom in QCD

Simplified realization of these ideas to QCD

P = Pp.ar + Pocp total pressure, Py ideal gas pressure

Phaar(T) = N2 Z Po(T,my),  InN=) — —(T/To)P,
n€hadrons
Pocp(T) = NG S" Py(T,m,),  InNG™ = Gy — c(NG™))e.

nEpartons

@ hadrons: Hagedorn-sp. up to a certain mass (m < 3GeV)
@ partons quark and gluon quasiparticles

@ Npag-(v) common suppression factor for all hadrons:
stretched exponential, and v~ T

@ Npart(Npagr) partonic suppression factor grows with the # of
available hadronic resonances.
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