

Experimental overview of collective flow with identified particles at RHIC and the LHC

ZIMÁNYI SCHOOL'16

Magdolna Zimányi (1934 - 2016)

16. Zimányi

WINTER SCHOOL ON HEAVY ION PHYSICS

> Dec. 5. - Dec. 9., Budapest, Hungary

József Zimányi (1931 - 2006)

Panos Christakoglou

Nikhef and Utrecht University

Experimental overview of collective flow with identified particles at RHIC and the LHC

CMS Experiment at LHC, CERN Data recorded: Wed Nov 25 12:21:51 2015 Run/Event: 262548 / 14582169 Lumi section: 309

Panos Christakoglou

Nikhef and Utrecht University

Many thanks to the (flow) groups from PHENIX, STAR, CMS, ALICE

(NA49 Collaboration): Phys.Rev.Lett. 80 (1998) 4136

(NA49 Collaboration): Nucl.Phys. A661 (1999) 341-344

(STAR Collaboration) Phys. Rev. Lett. 86 (2001) 402

Ş	Mass ordering at low p_{T}
Ş	Good description by blast-wave parametrisation

- Mass ordering at low p_{T}
- Good description by blast-wave parametrisation
- Agreement with (ideal) hydrodynamical calculations

- Good description by blast-wave parametrisation
- Agreement with (ideal) hydrodynamical calculations
- Apparent NCQ scaling at intermediate p_{T}

The "perfect liquid" at RHIC

🖸 SHARE 🛛 📲 🎡 輝 ...)

🚹 You 🔤 😐 📴 Sa 🖶 Print

Contacts: Karen McNuity Walsh, (631) 344-8350 or Peter Genzer, (631) 344-3174

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

Monday, April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the <u>Relativistic Heavy Ion Collider</u> (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In <u>peer-reviewed papers</u> summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a *liquid*. First Indirect Evidence of So-Far

Other RHIC News

Undetected Strange Baryons RHIC Featured in 'How The Universe

Works' on the Science Channel

A New Look for RHIC & Sharper View of QCD: Looking Back at the 2014 RHIC-AGS Users' Meeting

RHIC Run 14: A Flawless 'Run of Firsts'

The "perfect liquid" at RHIC and LHC

He

-1.0

0.08

0.06

0.04

0.02

0

-0.08

1

▼

Meson

-0.5

10

RHIC

0.0

 $(T-T_0)/T_0$

₽

 10^{2}

OGP

• ALICE

☆ STAR

PHOBOS

□ PHENIX

NA49

+ E877

★ EOS

▲ E895

FOPI

 10^{3}

 $\sqrt{s_{NN}}$ (GeV)

O CERES

1.0

0.5

TAMPA, FL -- The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the atter created in RHIC's heavy ion collisions appears to be more like a liquid.

Undetected Strange Baryons

RHIC Featured in 'How The Universe Works' on the Science Channel

A New Look for RHIC & Sharper View of QCD: Looking Back at the 2014 RHIC-AGS Users' Meeting

RHIC Run 14: A Flawless 'Run of Firsts'

 10^{4}

The sQGP paradigm

- Mass ordering observed at low p_T at RHIC energies
 - ★ expected by hydrodynamic calculations

B. Abelev et al. (ALICE Collaboration), JHEP 06 (2015) 190

Low p_T ($p_T < 3 \text{ GeV}/c$): mass ordering \rightarrow elliptic/radial flow interplay

- Radial flow pushes particles to higher $p_T \rightarrow$ depletion at lower p_T
 - ★ heavier particles "feel" more the boost → the higher the mass the larger the low p_T depletion

- Radial flow pushes particles to higher $p_T \rightarrow$ depletion at lower p_T
 - ★ heavier particles "feel" more the boost → the higher the mass the larger the low p_T depletion

- Radial flow pushes particles to higher $p_T \rightarrow$ depletion at lower p_T
 - ★ heavier particles "feel" more the boost → the higher the mass the larger the low p_T depletion

Toy model

- Radial flow pushes particles to higher $p_T \rightarrow$ depletion at lower p_T
 - ★ heavier particles "feel" more the boost → the higher the mass the larger the low p_T depletion

B. Abelev et al. (ALICE Collaboration), Phys. Rev. C88, (2013) 044910

- Radial flow pushes particles to higher $p_T \rightarrow$ depletion at lower p_T
 - ★ heavier particles "feel" more the boost → the higher the mass the larger the low p_T depletion

Qualitative similar to experimental observations

- Larger "push" in-plane than outof-plane as a function of mass
 - ★ larger low-p_T depletion inplane than out-of-plane → lower v₂ in a mass dependent way

$$v_2 \sim \frac{N_{in-plane} - N_{out-of-plane}}{N_{in-plane} + N_{out-of-plane}}$$

Azimuthally asymmetric system

- Larger "push" in-plane than outof-plane as a function of mass
 - ★ larger low-p_T depletion inplane than out-of-plane → lower v₂ in a mass dependent way

Toy model

Heavy particles have lower v_2 at a fixed p_T than light particles

Azimuthally asymmetric system

- Larger "push" in-plane than outof-plane as a function of mass
 - ★ larger low-p_T depletion inplane than out-of-plane → lower v₂ in a mass dependent way

Toy model

Heavy particles have lower v_2 at a fixed p_T than light particles

Azimuthally asymmetric system

- Larger "push" in-plane than outof-plane as a function of mass
 - ★ larger low-p_T depletion inplane than out-of-plane → lower v₂ in a mass dependent way

Toy model

Heavy particles have lower v_2 at a fixed p_T than light particles

B. Abelev et al. (ALICE Collaboration), JHEP 06 (2015) 190

At low p_T ($p_T < 3$ GeV/c): mass ordering \rightarrow elliptic/radial flow interplay

★ First bins could hint to a different ordering? Still inconclusive...

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 116, (2016) 062301

Mass ordering preserved at RHIC?

Probably also for cascades!!!

T. Hirano *et al*., Phys.Rev. C77 (2008) 044909

FIG. 9: (Color online) Transverse momentum dependence of the elliptic flow parameters for pions (dotted blue), protons (dashed green), and ϕ mesons (solid red), for Au+Au collisions at b = 7.2 fm. (a) Before hadronic rescattering. (b) After hadronic rescattering. (c) Ideal hydrodynamics with $T_{\rm th} = 100$ MeV. The results for pions and protons are the same as shown in Fig. 5.

(b)

(d)

Mass ordering not preserved!!!

Particles with large hadronic x-section are "pushed" to higher p_T (e.g. p)

Particles with small hadronic x-section are affected less (e.g. φ , Ξ)

Mass ordering preserved

n

A. Adare et al. (PHENIX Collaboration), Phys.Rev. C93 (2016) 051902

Mass ordering at low p_T observed also for higher harmonics at RHIC

Higher harmonics @ LHC

B. Abelev et al. (ALICE Collaboration), JHEP 09 (2016) 164

B. Abelev et al. (ALICE Collaboration), JHEP 09 (2016) 164

Same features for different v_n (up to v_5 !) even for ultra-central collisions

- Number of constituent quark (NCQ) scaling holding with good accuracy at RHIC
 - quarks coalesce forming hadrons?
 - NCQ scaling was considered as "evidence" of partonic degrees of freedom

J. Adams *et al.*, (STAR Collaboration), Nucl.Phys. **A757** (2005) 102 K. Adcox *et al.*, (PHENIX Collaboration), Nucl. Phys. **A757**, (2005) 184

A. Adare et al. (PHENIX Collaboration), Phys. Rev. C85, (2012) 064914

A. Adare et al. (PHENIX Collaboration), Phys. Rev. C85, (2012) 064914

Deviations for $p_T/n_q > 1$ GeV/c depend on centrality

NCQ scaling @ RHIC

L. Adamczyk et al. (STAR Collaboration), Phys.Rev.Lett. 116 (2016) 062301

Scaling seems to hold at an approximate level of 10-15% Good enough???

Scaling properties @ LHC

Intermediate p_T (3 < p_T < 6 GeV/c): ~grouping based on type (mesons/baryons)

ALI-PUB-82622

Qualitative similar deviations between LHC and RHIC, but the trend is different for different particle species

A. Adare et al., [PHENIX Collaboration], Phys. Rev. C85, (2012) 064914

ALI-PUB-85251

- Intermediate p_T (3 < p_T < 6 GeV/*c*) the ϕ -meson follows
 - \star the meson band for peripheral events

Intermediate p_T (3 < p_T < 6 GeV/c) the φ -meson follows

- \star the meson band for peripheral events
- \star the baryon band for central events

Mass effect also at the intermediate p_T range! Challenges the coalescence picture???

Intermediate p_T (3 < p_T < 6 GeV/*c*) the φ -meson follows

- \star the meson band for peripheral events
- \star the baryon band for central events

Scaling of higher harmonics @ LHC

B. Abelev et al. (ALICE Collaboration), JHEP 09 (2016) 164

- Probing the path length dependence
 - particles flying in- (out-of)plane have to travel through less (more) medium
 - ★ expect to see an azimuthal dependence of jets and high p_{\top} particles

High p_T pions, kaons, protons @ LHC: v_2

NIKHEF High *p*_T pions, kaons, protons @ LHC: nuclear modification factor

B. Abelev et al. (ALICE Collaboration), PLB 736 (2014) 196

- Large suppression of high p_{T} particles
- Suppression does not depend on particle species for $p_T > 10 \text{ GeV}/c$

Ηράκλειτος (Heraclitus) ~535 - 475 BC

Ηράκλειτος (Heraclitus) ~535 - 475 BC

Not only in A-A it seems but also for smaller systems!

(CMS Collaboration) arXiv:1606.06198 [nucl-ex]

Ηράκλειτος (Heraclitus) ~535 - 475 BC

Not only in A-A it seems but also for smaller systems!

More to come...

EoS

Personal wish-list: Connection to a much bigger picture

Backup

Looking at the details...: central events

- Systematic deviations for the majority of particle species (with the exception of K)
- Proton v₂ underestimated (i.e. extra push expected in hydro) but Λ v₂ overestimated (i.e. less push expected in hydro)
- Mass ordering not preserved in VISHNU due to the hadronic cascade
 - not supported by ALICE data

H. Song et al., arXiv:1311.0157 [nucl-th]

VISH2+1: comparison to spectra

Elliptic flow

Elliptic flow

Superposition of independent pp collisions

Development as a bulk system

high density and pressure at the center of the fireball

Asymmetric pressure gradients (larger in-plane than out-ofplane) push bulk out → flow

high density and pressure at the center of the fireball

 $\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$

More and faster particles inplane than out-of-plane

high density and pressure at the center of the fireball

 $\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$

Superposition of independent pp collisions

Superposition of independent pp collisions

Superposition of independent pp collisions

N -0 π/4 π/2 3π/4 π $φ-Ψ_2 (rad)$

Ν 0 π/4 π/2 3π/4 π φ-Ψ₂ (rad)

Development as a bulk system

Π

Π

0

π/4

$$v_2(p_T,\eta) = \langle cos[2(\varphi - \Psi_2)] \rangle$$

π/2

3π/4

 $\pmb{\varphi} \textbf{-} \Psi_2 \, (\text{rad})$

Searching for the critical point

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C88, (2013) 014902

Similar mass ordering at low p_T as the one reported for higher energies

 $\frac{1}{2}$ The ϕ seems to deviate from the ordering at lower energies

BES: v₂ of particles

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C88, (2013) 014902

- Similar mass ordering at low p_T as the one reported for higher energies
- Spread of $v_2(p_T)$ narrows with energy (not for antiparticles!)

BES: v₂ difference between particles and antiparticles

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C88, (2013) 014902

- Particle composition, baryon stopping change with energy
 - Is the difference a "trivial" effect or does it signal the transition to hadronic degrees of freedom?
- Models that couple hydro to baryon stopping seem to be getting similar differences with energy
- Situation is still quite unclear \rightarrow need for further input from theorists

BES: Baryon/meson grouping (particles)

BES: Baryon/meson grouping (antiparticles)

