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Motivation |.

@ Paradox of propagation speed:
parabolic (infinite) vs. hyperbolic (finite)
@ Relativistic models — hyperbolic equations: finite but can be
higher than c; parabolic eq.: preserves infinite speed
In local equilibrium:
Eckart theory, unstable due to heat conduction
Out of local equilibrium:Israel-Stewart (hyperbolic?, stability?)
Miiller-Ruggeri (divergence type, hyperbolic), etc...
@ Relativistic Fourier equation (parabolic):
Y0 —vO) T — O — 2505 + %0e) T =0
propagation speed > c is also valid
@ In non-relativistic framework:
Kinetic theory based phenomenology is not perfect
Non-equilibrium thermodynamics: universal.
Final benchmark: experiments!
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Motivation II.

@ Non-classical phenomena
e Wave propagation (“Second sound”) — MCV, GN, GK
e Ballistic propagation — There is no unified continuum theory!
Propagation with speed of sound, mechanical coupling!
Kinetic theory is the leading model — phonon hydrodynamics,
EIT, RET. Similar to the piston effect from hydrodynamics.

@ Obtain compatibility with the kinetic theory — application of
internal variables with generalized entropy current
@ Heat pulse experiments:

o NaF samples, on low temperature, test for the modeling
capability of non-classical phenomena

e Inhomogeneous samples, on room temperature, test for the
universality.
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About kinetic theory - phonon hydrodynamics I.

Interactions — distributions

@ Normal (N) processes: momentum is conserved

@ Resistive (R) processes: momentum is not conserved

@ Umklapp-processes: neither the energy, nor the momentum is
conserved

v

Connection to heat conduction

@ R-processes are dominant: diffusive propagation (Fourier)

@ N-processes are dominant: wave propagation (MCV...)

@ Ballistic propagation: heat conduction without interactions!

A\

23



Internal variables and heat conduction in non-equilibrium thermodynamics

About kinetic theory - phonon hydrodynamics Il.

Momentum series expansion + truncation closure
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It requires at least N=30 momentum equation to obtain the real
ballistic propagation speed
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Continuum theory - Generalization of heat conduction |

Tensorial internal variable + extended entropy current:
° qi is a basic field variable: QU is an internal variable
e entropy density: s(e,q', QY) =s.(e) — Bq' - q' — QY- QY
@ generalized entropy current: J' = big/ + Bk QK

Entropy production in 1 spatial dimension:
(b— %) 0xq+ (8xb — m10:q) g — (0xB — m20: Q) Q + BIxQ > 0

| \

Linear relations between thermodynamic fluxes and forces, isotropy:

midrq —Oxb = —haq,
m0:Q —O0xB = —kiQ + k120xq,
b7 = —knQ+ kg,

B = noQ.
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Continuum theory - Generalization of heat conduction Il

Tensorial internal variable + extended entropy current:
° qi is a basic field variable: QU is an internal variable
e entropy density: s(e,q', QY) =s.(e) — Bq' - q' — QY- QY
@ generalized entropy current: J' = big/ + Bk QK

Entropy production in 1 spatial dimension:
(b— %) 0xq+ (8xb — m10:q) g — (0xB — m20: Q) Q + BIxQ > 0

| \

Linear relations between thermodynamic fluxes and forces:

moiq —Oxb = —haq,
M0 Q — B = —kiQ + ki20xq, Compatibility with
b— % = —knQ + ko957, kinetic theory

B = noaQ. 7/23
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Properties of the hierarchical structure

New quantity: QY — current density of the heat flux
Effective model in the sense of material parameters

Incorporates the ballistic effect

Hyperbolic system:
e finite propagation speeds
e the existence and uniqueness of the solution

Generalized (dimensionless) equations:
@ MCV: 7404 T + 0: T = 0xx T
o GK: 7,04 T + 0: T = 0 T + K20p T
o Green-Naghdi: 7,04 T = 0 T + K20px T, etc...

@ Ballistic-conductive:
TqTQattt T =+ (Tq + TQ)att T + at T = 8XX T + (/{2 + TQ)atXX T
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Experiments |.

What is the heat pulse experiment?!
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Experiments |l.

Beyond the phenomenon of second sound — ballistic propagation

Jackson - Walker -
McNelly experiments
on NaF material
(1968-70).

The 3 propagation
modes can be clearly
distinguished!

11.0K

Pulse height (different gains)

Pulse height (different gains)
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How can it be modeled?
Kinetic theory + RET: phonon hydrodynamics
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Important details

Well-documented series of experiments...but

@ The samples can be hardly distinguished (by peak thermal
conductivity and sample length) — problematic identification
of thermal conductivity — McNelly's PhD thesis makes it clear

@ The temperature dependency of material parameters

@ Cooling effect during propagation:

ate+V'q: _Q’(T_ T0)7
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The ballistic-conductive model |I.

System of equations in dimensionless form:

oT Oq
o Tax = %
aq oT 0Q
Tagg N9t A TR = O
0Q 9q
TQ@t+Q+ 8X = 0.

Kk — can be used to adjust the speed of ballistic propagation

Finite difference discretization

@ Explicit scheme — stability conditions with von Neumann
method and Jury criterion.

12 /23



Internal variables and heat conduction in non-equilibrium thermodynamics

The ballistic-conductive model Il. - IC&BC

Initial conditions
All fields are zero at t=0.

Boundary conditions

Only for the field of heat flux — discretization method!

0) 1 — cos(2m - tp—tlse) if 0 < t < thuse
0 if t > tousse

=1

X=0 X
>< >< >< . Shifted fields:
One goes from x =0
to x = 1, the others
E >< >< >< T shifted by 4.
Ax/2
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The ballistic-conductive model - Solutions I.

Material parameters:

k =102004%, ¢ = 1.872%, p = 286625

Tg = 0.355us, 79 = 0.21us and L = 7.9mm, At = 0.24us

Rear side temperature
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The ballistic-conductive model - Solutions II.

Pulse height (different gains)

Pulse height (ditferent gains)
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"Death match” of different descriptions I.

Phonon hydrodynamics (RET) vs NET+IV
At least N=30 momentum egs. vs 3 egs.

No. of fitted parameters: 2 relaxation time vs. 2+1 parameters

Solved on semi-infinite region vs real domain

Relative amplitudes: false vs true
Summary: RET results are more like model testing than fitting;
Wrong: heat pulse length, sample size, thermal conductivity
Is the RET model appropriate? Can not be decided.
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"Death match” of different descriptions II.
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"Death match” of different descriptions IlI.
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"Death match” of different descriptions IV.

Hybrid phonon gas model of Y. Ma vs NET+IV
Longitudinal signal: artificial extension vs simplified model
Fitted parameters: 2 relaxation time vs 241
Boundary conditions: no information vs effective cooling

Wrong thermal conductivity, no information about the others.

Measured Simulation Measured Simulation
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What about on room temperature?

front face rear face
EE— e S .
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— e
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silver layer“

Arrangement of the measurement, made at DEE BME
Simplified B-C model (7¢ = 0): Guyer-Krumhansl equation
TaTi Tttt + (Tq +}Q/)att7— + 8tT = 8xx T + (K/2 +}Q/)atxXT
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Over-diffusive phenomenon I.

Measurement on room temperature, metal foam sample
7q0u T + 0t T = Oux T + 1°0per T, Fourier equation

Rear side temperature
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Over-diffusive phenomenon II.

Measurement on room temperature, metal foam sample
TqO0u T + 0t T = Oux T + K?Opex T, Guyer-Krumhans| equation

Rear side temperature
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Thank you for your kind attention!
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