Induced surface tension within novel equation of state of nuclear and hadron matter

O. Ivanytskyi

collaborators: K. Bugaev and V. Sagun

Refs: Nucl. Phys. A 924, 24 (2014) arXiv:1611.07569 [nucl-th]

Budapest, 7 December 2016

Zimaniy School

Models of hadronic/nuclear matter EoS

- Relativistic Mean Field models Walecka Model, Chiral PerturbationTheory, etc. Advantage: QCD symmetries are preserved **Problems:** 1. NO fluctuations \Rightarrow unrealistic critical point 2. Only few particle species
- **Statistical Cluster models** Fisher Droplet Model, Gas of Bags Model, Statistical Multifragmentation Model, Hadron Resonance Gas Model **Advantage:** fluctuations \Rightarrow physical critical point Problems: Hard core repulsion violates causality
- Hybrid approach Walecka model with nonrelativistic proper volume of nucleons

$$
p(T, \mu) = p_{\text{Walecka}}(T, \mu - pV_{\text{eigen}})
$$

D.H. Rischke, M.I. Gorenstein, H.Stoecker and W. Greiner, Z. Phys. C 51(1991) 485 Why hard core repulsion?

Hadronic hard core

• Prevents phenomenological EoS of QCD from quark confinement at high temperatures

ideal gas : p $\sim \mathcal{T}^4$

hard core : $p \sim T$

- Accounts for short range repulsion between the constituents (hadrons, nuclear fragments, etc.)
- Is necessary for statistical (not Van der Waals) liquid-gas phase transition in cluster models
- **•** Important element in description of particle yields (ideal hadron gas is proven to be inadequate at high A+A collision energies)

- J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993)
- J. Cleymans, M.I.Gor[en](#page-1-0)stein, J. Stalnacke and E.Suhonen, [P](#page-3-0)[hy](#page-1-0)[s.](#page-2-0) [S](#page-3-0)[cr](#page-0-0)[i](#page-1-0)[pt](#page-7-0)[a](#page-8-0) [4](#page-0-0)[8](#page-1-0)[,](#page-7-0) [2](#page-8-0)[77](#page-0-0) [\(19](#page-27-0)93)

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nutlement al 91 artace tension within novel equation of state of nuclear

Hadronic hard core

• Prevents phenomenological EoS of QCD from quark confinement at high temperatures

ideal gas : p $\sim \mathcal{T}^4$

hard core : $p \sim T$

- Accounts for short range repulsion between the constituents (hadrons, nuclear fragments, etc.)
- Is necessary for statistical (not Van der Waals) liquid-gas phase transition in cluster models
- **•** Important element in description of particle yields (ideal hadron gas is proven to be inadequate at high A+A collision energies)

- J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993)
- J. Cleymans, M.I.Gor[en](#page-2-0)stein, J. Stalnacke and E.Suhonen, [P](#page-4-0)[hy](#page-2-0)[s.](#page-3-0) [S](#page-4-0)[cr](#page-0-0)[i](#page-1-0)[pt](#page-7-0)[a](#page-8-0) [4](#page-0-0)[8](#page-1-0)[,](#page-7-0) [2](#page-8-0)[77](#page-0-0) [\(19](#page-27-0)93)

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nutlement al 91 artace tension within novel equation of state of nuclear

Hadronic hard core

• Prevents phenomenological EoS of QCD from quark confinement at high temperatures

ideal gas : p $\sim \mathcal{T}^4$

hard core : $p \sim T$

- Accounts for short range repulsion between the constituents (hadrons, nuclear fragments, etc.)
- Is necessary for statistical (not Van der Waals) liquid-gas phase transition in cluster models
- **•** Important element in description of particle yields (ideal hadron gas is proven to be inadequate at high A+A collision energies)

- J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993)
- J. Cleymans, M.I.Gor[en](#page-3-0)stein, J. Stalnacke and E.Suhonen, [P](#page-5-0)[hy](#page-3-0)[s.](#page-4-0) [S](#page-5-0)[cr](#page-0-0)[i](#page-1-0)[pt](#page-7-0)[a](#page-8-0) [4](#page-0-0)[8](#page-1-0)[,](#page-7-0) [2](#page-8-0)[77](#page-0-0) [\(19](#page-27-0)93)

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nutlement al 91 artace tension within novel equation of state of nuclear

Constraints on hadronic/nuclear matter EoS

- Multicomponent $EoS \Rightarrow$ Grand Canonical Ensemble (GCE) is natural choice
- Thermodynamic consistency (in GCE pressure is function of T and μ only) $p = p(\mathcal{T}, \mu, n) \Rightarrow$ contradiction with thermodynamic relation $n = \frac{\partial p}{\partial \mu}$ L. van Hove, Physica 15, 951 (1949) and Physica 16, 137 (1950)
- Switching between excluded and eigen volumes (per particle)

high order virilal coefficients are needed

Causality: $c_{sound} \le c_{light} = 1$, where $c_{sound}^2 = \frac{dp}{d\epsilon}\big|_{s/n=const}$ Existing approaches to restore causality violated by hard core are rather complicated K. Bugaev, Nucl. Phys. A 807 (2008)

Something more convenient for practical a[ppl](#page-4-0)i[ca](#page-6-0)[t](#page-4-0)[ion](#page-5-0)[s](#page-1-0) [i](#page-0-0)s[n](#page-8-0)[e](#page-8-0)e[d](#page-0-0)ed QQ

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

Application to compact astrophysical objects

- Hadronic EoS used for modeling of the neutron star interiors **violates causality** H. Grigorian, COST Action @ CPOD 2016, Wroclaw
- Three, four, ... particle forces are needed high order virial coefficients G. Baym, COST Action @ CPOD 2016, Wroclaw

 $3 \rightarrow 3$ reactions

 $4 \rightarrow 4$ reactions

2nd virial coefficient

3rd virial coefficient

 $4th$ virial coefficient

Observational constrains require soft/stiff EoS at low/high densities

T. Kojo, COST Action @ CPOD 2016, Wroclaw hyperons \Rightarrow softening of the hadronic EoS multicomponent EoS in GCE is needed

• Thermodynamically inconsistent suppression of deutrons in the neutron star interiors ⇒ pressure discontinuity $=$ zero order PT S. Typel, Eur. Phys. J. A (2016) 52, 16

 QQ

- Simple multicomponent EoS with hard core repulsion
- Thermodynamic consistency
- Correct asymptotics of excluded volume EoS at low and high densities
- **•** Higher virial coefficients
- Causality up to densities where QGP is expected

Multicomponent mixture of Boltzmann hard spheres

• Virial expansion in powers of one particle thermal densities $\{\phi_i\}$

$$
\frac{p}{T} = \sum_{i} \phi_{i} e^{\frac{\mu_{i}}{T}} - \sum_{i,j} \frac{2\pi}{3} (R_{i} + R_{j})^{3} \phi_{i} \phi_{j} e^{\frac{\mu_{i} + \mu_{j}}{T}} + \mathcal{O}(\phi^{3})
$$
\n
$$
= \sum_{i} \phi_{i} e^{\frac{\mu_{i}}{T}} \left(1 - V_{i} \sum_{j} \phi_{j} e^{\frac{\mu_{j}}{T}} - S_{i} \sum_{j} R_{j} \phi_{j} e^{\frac{\mu_{j}}{T}}\right) + \mathcal{O}(\phi^{3})
$$
\nbulk term

\nsurface term

• VdW like extrapolation (gives exponentials)

$$
\sum_{j} \phi_{j} e^{\frac{\mu_{j}}{T}} \simeq \frac{p}{T} \Rightarrow \begin{cases} \frac{p}{T} = \sum_{i} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \Sigma S_{i}}{T}\right) - \text{pressure} \\ \frac{\Sigma}{T} = \sum_{i} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \Sigma S_{i}}{T}\right) R_{i} - \text{ surface tension} \end{cases}
$$

V.Sagun, A.Ivanytskyi, K. Bugaev, I. Mishustin, Nucl. Phys. A 924, 24 (2014)

• Hard core repulssion only in part is accounted by eigen volume. The rest corresponds to induced surface tension

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

Extrapolation to high densities

Extrapolation to high densities is not unique \Rightarrow equations for p and Σ can differ

$$
\frac{p}{T} = \sum_{i} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \Sigma S_{i}}{T}\right) \qquad \text{not uniqueness} \atop \frac{\Sigma}{T} = \sum_{i} R_{i} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \Sigma S_{i}}{T}\right) \cdot \exp\left(\frac{(1 - \alpha)S_{i}\Sigma}{T}\right), \quad \alpha = \text{const}
$$

Meaning of $\alpha > 1$: one component case

$$
\Sigma = pR \exp\left(\frac{(1-\alpha)S\Sigma}{T}\right)
$$
\n
$$
p = T\phi \exp\left(\frac{\mu - pV_{\text{eff}}}{T}\right)
$$
\n
$$
V_{\text{eff}} = V \left[1 + 3 \exp\left(\frac{(1-\alpha)S\Sigma}{T}\right)\right]
$$

 α switches excluded and eigen volume regimes high order virial coefficients?

- Higher virial coefficients of hard spheres
	- Second virial coefficient reproduced for any α
	- Third virial coefficient reproduced for $\alpha = 1.245$ whithin 16%
	- Fourth virial coefficient reproduced for $\alpha = 1.245$ $\alpha = 1.245$

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

 \Rightarrow low densities $(\Sigma \rightarrow 0) : V_{\text{eff}} = 4V$
 \Rightarrow high densities $(\Sigma \rightarrow \infty) : V_{\text{eff}} = 1$ high densities $(\Sigma \to \infty)$: $V_{\text{eff}} = V$

Comparison with other one component EoS

One component Boltzmann gas of hard spheres

VdW EoS: $Z=(1-4\eta)^{-1}$ - is rather stiff

- Guggenheim EoS: $Z = (1 \eta)^{-4}$ reproduced up to $\eta \simeq 0.2$
- Carnahan-Starling EoS (reproduces 7 virial coefficients): $Z = \frac{1 + \eta + \eta^2 \eta^3}{(1 \eta)^3}$ $(1-\eta)^3$ - reproduced up to $\eta \simeq 0.22$

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

Causality of IST EoS at very extreme cases

• Boltzmann mixture of baryons (N and Δ) and pions

At $\alpha = 1.25$ multicomponent EoS is causal up to \simeq 7 normal nuclear densities where quark matter is expected

 QQ

EoS with Induced Surface Tension

$$
p = \sum_i p_0(T, \mu_i) \Rightarrow \begin{cases} p = \sum_i p_0(T, \mu_i - pV_i - \Sigma S_i) \\ \Sigma = \sum_i p_0(T, \mu_i - pV_i - \alpha \Sigma S_i)R_i \end{cases}
$$

Advantages compared to other EoS with hard core repulsion:

- Multicomponent character and thermodynamic consistency
- Correct asymptotic of excluded volume at high and low densities, higher virial coefficients
- Wide range of causality
- Straightforward generalization to quantum statistics and mean field models
- **•** Questions
	- Value of α in case of quantum statistics? Medium dependent α ?
	- ...

Hadron Resonance Gas

- \bullet Hadrons with masses \leq 2.5 GeV (widths, strong decays, zero strangeness)
- 111 independent particle ratios measured at 14 energies
- 14 × 4 local parameters $(T, \mu_B, \mu_{13}, \gamma_s)$ + 5 global parameters (hard core radii)

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nucle. Induced surface tension within novel equation of state of nuclear

 K^+/π^+ and Λ/π^- ratios

- Induced surface tension correction improves quality of the data description
- Advantage in multicomponent case EoS includes just two equations EoS of earlier HRG model versions - N equati[on](#page-13-0)[s f](#page-15-0)[o](#page-13-0)[r](#page-14-0) [N](#page-15-0) [c](#page-7-0)[o](#page-8-0)[m](#page-18-0)[p](#page-7-0)[o](#page-8-0)[n](#page-17-0)[e](#page-18-0)[nt](#page-0-0)[s](#page-27-0)

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nucle. Induced surface tension within novel equation of state of nuclear

つくへ

Hadron Resonance Gas at ALICE energies

- 11 independent particle yields, 6 parameters (temperature $+5$ hard core radii) \bullet
- Overal χ^2/d of $\simeq 1.038$
- Freeze out temperature $T_{FO} = 154 \pm 7$ MeV

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear dial surface tension within novel equation of state of nuclear

つくへ

Applicability test with multicomponent Carnahan-Starling EOS

Using densities, T and hard-core radii we calculated compressibility for each EOS and compared them with Z of MCSL EOS

MCSL EOS: G. A. Mansoori, N. F. Carnahan, K. E. Starling and T. W. Leland, Jr., J. Chem. Phys. 54, 1523 (1971)

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

Same Applicability Test for IST EOS

IST EOS with Bag Model radii is valid for T < 260 MeV

IST EOS with new radii is valid for $T < 280$ MeV

IMPORTANT: IST EOS is much softer than MCSL EOS at high densities!

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

Summary

- Thermodynamically consistent approach to account for the excluded volume effects is proposed.
- Developed EoS reproduces 3rd and 4th virial coefficients and provides causality up to 7 normal nuclear densities.
- Approach to study induced surface tension. is developed. Tolman length caused by curvature effects is evaluated. Not in this talk :(
- Novel EoS is applied to study properties of hadronic matter. Phase diagram of nuclear matter is analyzed. Not in this talk :(
- Generalization of EoS with induced surface tension is discussed.

Thank you for attention

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

4 0 F

Ξ

重

 299

₿

Nuclear matter in Statistical Multifragmentation Model

- Degrees of freedom: nucleons and composite nuclear fragments
- Interaction: hard-core repulsion, effective attraction due to large number of constituents like in the original Statistical Bootstrap Model
	- J. P. Bondorf et al., Phys. Rep. 257, 131 (1995) and references therein
- Phase diagram with statistical liquid-gas phase transition and critical point

- Properties of normal nuclear matter
- Compressible nuclear liquid \Rightarrow critical density $\simeq \frac{\rho_0}{3}$ which is typical for liquid-gas <code>PT</code> (standard SMM with incompressible nuclear liquid predicts $\rho_{cen} = \rho_0$)
- V. V. Sagun, A. I. Ivanytskyi, K. A. Bugaev, I. N. Mishustin, [Nu](#page-19-0)[cl.](#page-21-0) [P](#page-19-0)[hys](#page-20-0)[.](#page-21-0) [A](#page-17-0) [9](#page-18-0)[24](#page-27-0)[,](#page-17-0) [24](#page-18-0) [\(2](#page-27-0)[01](#page-0-0)[4\)](#page-27-0) Ω

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

Thermodynamic consistency

- Grand Canonical Ensemple \Rightarrow pressure is function of T, μ and V only, $p = p(T, \mu, n) \Rightarrow$ contradiction with thermodynamic relation $n = \frac{\partial p}{\partial \mu}$ L. van Hove, Physica 15, 951 (1949) and Physica 16, 137 (1950)
- van der Waals EoS is thermodynamically consistent

$$
p = \underbrace{\frac{Tn}{1 - nb}}_{CE} = \underbrace{T\phi \exp\left(\frac{\mu - pb}{T}\right)}_{GCE} \text{ if } n = \frac{\partial p}{\partial \mu}, \ \phi = g \underbrace{\int \frac{d\vec{k}}{(2\pi)^3} e^{-\frac{\omega(\vec{k})}{T}}}{\text{one particle}}_{\text{thermal density}}
$$

Available volume fraction commonly used to account for hard core repulsion

motivated by VdW EoS in CE :
$$
p = \frac{Tn}{V\Phi_{VdW}(n)}
$$
, $\Phi_{VdW}(n) = 1 - bn$

GCE generalizations : $p = \frac{p_{id}(T, \mu)}{A}$

 $\frac{\partial \Gamma(1, \mu)}{\partial \phi(n)}$ – not thermodynamically consistent

- S. Typel, Eur. Phys. J. A (2016)52:16
- GCE is much more suitable for multicomponent mixtures than CE

Thermodynamic consistency sho[uld](#page-20-0) [b](#page-22-0)[e](#page-18-0)[pr](#page-22-0)[o](#page-17-0)[vi](#page-27-0)[d](#page-27-0)ed.

Induced surface tension within novel equation of state of nuclear

Excluded or eigen volume?

hard core repulsion blocks the part of space for particle motion \Rightarrow

Low densities

translation of one particle around another

$$
V_{\text{excl}} = \frac{1}{2} \cdot \frac{4\pi}{3} (2R)^3 = 4 V_{\text{eigen}}
$$

excluded volume

High densities

motion of particles is restricted

 $V_{\text{excl}} \simeq V_{\text{eigen}}$

- replacement $\mu \to \mu pV_{eigen}$ is based on the **high density approximation**
- VdW EoS is extrapolation of the low density expastion

Contradicti[on](#page-21-0)[?](#page-23-0) O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nucle. Induced surface tension within novel equation of state of nuclear

Physical origin of the induced surface tension

- Hard core repulsion only in part is accounted by eigen volume
- The rest corresponds to surface tension and curvature tension Curvature tension can be accounted explicitly or implicitly
- Physical clusters tend to have spherical (in averag[e\)](#page-22-0) [sha](#page-24-0)[p](#page-22-0)[e](#page-23-0)

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

Causality

- Causality condition: $c_{sound} \le c_{light} = 1$, where $c_{sound}^2 = \frac{dp}{d\epsilon}\Big|_{\frac{s}{n} = const}$
- VdW EoS violates causality:

$$
p = T\phi(T) \exp\left(\frac{\mu - pb}{T}\right) \Rightarrow \begin{cases} p \to \mu/b \\ n \to 1/b \\ s \to T\phi'/b\phi \\ \epsilon = Ts + \mu n - p \to T^2\phi'/b\phi \end{cases} \Rightarrow c_{sound} \to \infty
$$

absolutely rigid objects are absent in nature due to Lorentz contraction

Lorentz contraction of hard spheres is accounted for non-quantum VdW EoS K. Bugaev, Nucl. Phys. A 807 (2008) relativistic hard core potential is momentum dependent ⇓ prescription is rather complicated One should look for something more convenient for practical a[pp](#page-23-0)[li](#page-25-0)[c](#page-23-0)[at](#page-24-0)[io](#page-25-0)[n](#page-18-0)[s](#page-27-0) Ω O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

High order virial coefficients

Virial expansion of one component EoS with induced surface tension

$$
p = nT\left[1 + \overbrace{4V}_{n} + \overbrace{\left(16 - 18(\alpha - 1)\right)V_{n}^{2}}^{a_{3}} + \underbrace{\left(64 - 216(\alpha - 1) + \frac{243}{2}(\alpha - 1)^{2}\right)V_{n}^{3}}_{a_{4}}\right] + \mathcal{O}(n^{5})
$$

- Second virial coefficient of hard spheres $a_2 = 4V$ is reproduced always
- Third virial coefficient of hard spheres
- $a_3 = 10V^2 \Rightarrow \alpha = \frac{4}{3}, \ a_4 = \frac{11V^3}{2}$ $\frac{N^3}{2}$ - not reproduced
- Fourth virial coefficient of hard spheres

 $a_4 \simeq 18.365 \, V^3 \; \Rightarrow \; \alpha \simeq 2.537, \; a_3 \simeq -11.666 \, V^2$ - not reproduced $\alpha \simeq 1.245,\,\,$ a $_3 \simeq 11.59 V^2$ - reproduced with 16 % accuracy

One parameter reproduces two (3rd and 4th) virial coefficients and allows generalization for multi[com](#page-24-0)[p](#page-26-0)[o](#page-24-0)[ne](#page-25-0)[n](#page-26-0)[t](#page-17-0) [c](#page-18-0)[as](#page-27-0)[e](#page-17-0)

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nucle. Induced surface tension within novel equation of state of nuclear

 QQ

Tolman correction

• Extrapolation to high densities is not unique \Rightarrow surface and curvature terms can be treated separately surface term

$$
\frac{P}{T} = \sum_{i} \phi_{i} e^{\frac{\mu_{i}}{T}} \left(1 - V_{i} p - \frac{\overbrace{S_{i}}}{2} \sum_{j} R_{j} \phi_{j} e^{\frac{\mu_{j}}{T}} - 2 \pi R_{i} \sum_{j} R_{j}^{2} \phi_{j} e^{\frac{\mu_{j}}{T}} \right) + \mathcal{O}(\phi^{3})
$$

Term proportional to circumference $L_i = 2\pi R_i^2$ is accounted explicitly

$$
\frac{p}{T} = \sum_{i} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \sum S_{i} - CL_{i}}{T}\right) - \text{pressure}
$$
\n
$$
\frac{\sum_{i} \sum_{j} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \sum S_{i} - CL_{i}}{T}\right) \frac{R_{i}}{2} - \text{ surface tension}
$$
\n
$$
\frac{C}{T} = \sum_{i} \phi_{i} \exp\left(\frac{\mu_{i} - pV_{i} - \sum S_{i} - CL_{i}}{T}\right) \frac{R_{i}^{2}}{2} - \text{ curvature tension}
$$

• Tolman correction to surface tension

$$
\Sigma_i^{tot} = \Sigma \left(1 - \frac{2\delta}{R_i} \right), \qquad \delta = \frac{C}{\Sigma} - \textbf{Tolman length}
$$

R.C. Tolman, J. Chem. Phys. 17, 333 (1949) Ω O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nuclear Induced surface tension within novel equation of state of nuclear

Negative values of surface tension

Surface Free Energy: $F = E - TS$

Also one can find supremum and infimum for surface F and surface partition $\sigma_0 (1 - \lambda_L T) v^{\frac{2}{3}} \geq F \geq \sigma_0 (1 - \lambda_U T) v^{\frac{2}{3}}, \quad \lambda_L \approx 0.28 T_c^{-1}, \quad \lambda_U \approx 1.06 T_c^{-1}$ K.A. Bugaev & J. Elliott. UJP 52 (2007)

Thus, there is NOTHING wrong, if surface free energy $F < 0$ for high T! This means only that entropy contribution dominates!

O. Ivanytskyi collaborators: K. Bugaev and V. Sagun Refs: Nucle. Induced surface tension within novel equation of state of nuclear