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Motivation

• neutron stars are celestial laboratories for the study of dense 
matter

• recent observations have uncovered both massive and low-
mass neutron stars and have also set constraints 
on neutron star radii

Circinus X-1: X-ray light rings from a binary neutron star 
(24 June 2015; Chandra X-ray Observatory)



Motivation

• the largest mass measurements are powerfully influencing the 
high-density equation  of  state  because  of  the  existence  of  
the  neutron  star  maximum  mass

• the  smallest mass measurements, and the distributions of 
masses, have implications for the progenitors and formation 
mechanisms of neutron stars

• the ensemble of mass and radius observations can realistically 
restrict the properties of dense matter, and, in particular, the 
behavior of the nuclear symmetry energy near the nuclear 
saturation density

• simultaneously, various nuclear experiments are progressively 
restricting the ranges of parameters describing the symmetry 
properties of the nuclear equation of state



Neutron stars

• the concept of the neutron star dates back to the 1930s, when 
it was discussed in the context of general relativity by 
Oppenheimer a dense neutron gas could support itself 
under gravitational attraction provided the total mass was not 
greater than ~2M☉ (Baade & Zwicky, 1933; Kalogera & Baym, 
1996)

• this idea remained largely 
academic until the discovery 
of pulsars in 1967 by J. Bell et al.

Jocelyn Bell



Precise neutron star mass measurements are useful for a variety of purposes. One of them is to constrain the 
macroscopic behaviour (in particular the relation between density and pressure, known as the equation of state, 

or EOS) of the cold, super-dense matter at the center of a neutron star. For each EOS (named in the figure) the 
relation between mass and radius for all neutron stars is indicated by its related curve. If a particular EOS predicts 

a maximum mass smaller than the largest measured NS mass (horizontal bars are for the three most massive 
pulsars tabulated below) then it is excluded. Figure created by Norbert Wex. 

EOSs tabulated in Lattimer & Prakash (2001) and provided by the authors. 



Our model

• in the Kaluza-Klein model the gravity and quantum field 
theory can be unified at energy scale lower than the Planck's 
scale (Kaluza,1921; Klein,1926; Antoniadis,1990)

• in the simplest case a 3+1C+1 dimensional space-time can be 
introduced, where excited particles can move freely along the 
extra x5 spatial direction as well

• in this manner we 'geometrize' quantum fields, where charges 
are associated with compactified spatial extra dimensions, 
induced by the topological structure of the space-time



Our model – Klauza-Klein model



Mass of the excited states

• the compactness of the extra dimension generates a periodic 
boundary condition, which results a Bohr-type quantization 
condition for the k5 momentum component  the relation 
induces an uncertainty in the position with the size (volume) 
of 2πRc

• an interesting feature of this space-time structure, that 
motion into the 5th dimension generates an extra mass term 
by k5, what appears as 'excited mass', m in the standard 3+1-
dimensional space-time





Mass of the excited states

• is the particle mass in the 5-dimensional description

• n is the excitation number

• Rc is the compactified radius  for example

Rc ≈ 10-13 cm  this 'extra mass' gap Δm ≈ 100 MeV

• an available value in hadron spectroscopy by the TeV energy 
accelerators, such as the Large Hadron Collider 
(Arkhipov,2004) or even in superdense compact stars 

• in this work the extra compactified 5th dimension represents 
the hypercharge or the similar quantum number (strangeness, 
charm, or bottomness) connected to even several number of 
flavors



Mass of the excited states

• in our first approach:

• based on the above model on the degrees of freedom, we 
present our results for the EoS in the case of non-interacting 
fermion gas in 3+1C+1 dimensional space-time with excitations
(n) and ‘extra mass’ gap (Δm) values as highlighted above





Method

• calculated from Tolman-Oppenheimer-Volkov equation in 
static, spherical symmetric, 5-dimensional spacetime applying 
several many-component, non-interacting fermion EoS-s for 
given n and Δm values

• M(r) gives the mass included in a sphere with the same center 
as the neutron star and the radius r 



Method

• the pressure and energy per state:

• the number density and chemical potential per state:



Method

• the simplest model for a neutron star is one consisting of a 
Fermi gas of non-interacting neutrons  pure neutron star

• the complex model  non-interacting fermion gas in 3+1C+1 
dimensional space-time with excitations (n) and ‘extra mass’ 
gap (Δm) values 



Results
0. Pure neutron star

The mass-radius relation, M(R) of compact star models.
This plot depicts the mass over the radius for different values of the initial central energy. 



Results
0. Pure neutron star

The mass-chemical potential relation, M(μ) of compact star models.
This plot depicts the mass over the radius for different values of the initial central energy. 



Results
1. Excitation number (n) increases

The mass-radius relation, M(R) of compact star models



Results
1. Excitation number (n) increases

The mass-chemical potential relation, M(μ) of compact star models.



Results
2. The mass gap (Δm) increases

The mass-radius relation, M(R) of compact star models



Results
2. The mass gap (Δm) increases

The mass-chemical potential relation, M(μ) of compact star models.



Results
3. The maximum mass of a compact star

Mmax as a function of Δm and n



Conclusion

• The mass-radius diagram clearly presents 

• that increasing the Δm, the maximum mass of the star is getting 
larger, since the EoS of the star becomes stiffer

• that increasing the n, the maximum mass of the star is getting 
smaller, since the EoS of the star becomes softer

• As increasing Δm and getting Δm ≈ 110 MeV, the Mmax

increases and saturates to a maximum 0.7 M


independently 
of the excitation number

• As decreasing Δm (softens the EoS), Mmax also saturates, but 
results smaller-and-smaller Mmax depending on the possible 
degrees of freedom, the excitation number
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