PHENIX results on Levy analysis of Bose–Einstein correlation functions

Zimányi Winter School on Heavy Ion Physics

Dániel Kincses for the PHENIX Collaboration

Eötvös Loránd University, Hungary
Table of Contents

- The PHENIX Experiment
- Introduction to HBT correlations
- Recent PHENIX HBT results
 - Beam energy & system size dependence of HBT radii (arXiv:1410.2559)
 - Levy analysis of Bose-Einstein correlation functions
- Summary
The PHENIX Experiment

The PHENIX detector system

- Observing collisions of p, d, Cu, Au, Al, He, U
- Charged pion ID from ~ 0.2 to 2 GeV/c
- Beam energy scan is important
The RHIC Beam Energy Scan

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>510.0</td>
<td></td>
</tr>
<tr>
<td>500.0</td>
<td></td>
</tr>
<tr>
<td>200.0</td>
<td></td>
</tr>
<tr>
<td>130.0</td>
<td></td>
</tr>
<tr>
<td>62.4</td>
<td></td>
</tr>
<tr>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td></td>
</tr>
</tbody>
</table>

- **p+p**
- **Au+Au**
- **d+Au**
- **Cu+Cu**
- **U+U**
- **Cu+Au**
- **He+Au**
- **p+Au**
- **p+Al**

Introduction to Bose-Einstein correlations

\(N_1(p), N_2(p) \) - invariant momentum distributions, the definition of the correlation function:

\[
C_2(p_1, p_2) = \frac{N_2(p_1, p_2)}{N_1(p_1) N_1(p_2)} \tag{1}
\]

The invariant momentum distributions

\[
N_1(p) - \text{norm.}, \quad N_2(p_1, p_2) = \int S(x_1, p_1) S(x_2, p_2) |\Psi_2(x_1, x_2)|^2 \, d^4x_2 \, d^4x_1 \tag{2}
\]

- \(S(x, p) \) source func. (usually assumed to be Gaussian - Lévy is more general)
- \(\Psi_2 \) - interaction free case - \(|\Psi_2|^2 = 1 + \cos(qx) \)

If \(k_1 \approx k_2 \):

\[
C_2(q, K) \approx 1 + \left| \frac{\tilde{S}(q, K)}{\tilde{S}(0, K)} \right|^2, \quad \tilde{S}(q, k) = \int S(x, k) e^{iqx} \, d^4x
\]

- Sometimes this simple formula fails (cf. experimentally observed oscillations at L3, CMS)
Final state interactions, resonances

- Final state interactions distort the simple Bose-Einstein picture
 - identical charged pions - Coulomb interaction
 - different methods of handling, an usual practice: Coulomb-correction
 - $C_{B-E}(q) = K(q) \cdot C_{\text{measured}}(q)$
 - An other possibility to fit with the effect incorporated in the fitted func.
- Resonance pions reduce the correlation function
 - $S = S_C + S_H$
- Primordial pions - Core $\lesssim 10$ fm
- Resonance pions - from very far regions - Halo

The out-side-long system, HBT radii

- Corr. func. (with Gaussian source): \(C_2(q) = 1 + \lambda \cdot e^{-R_{\mu\nu}^2 q^\mu q^\nu} \)

- Bertsch-Pratt pair coordinate-system
 - out direction: direction of the average transverse momentum (\(K_t \))
 - long direction: beam direction (z axis)
 - side direction: orthogonal to the latter two

- LCMS system (Lorentz boost in the long direction)

- From the \(R_{\mu\nu}^2 \) matrix, \(R_{out}, R_{side}, R_{long} \) nonzero - HBT radii

- Out-side difference - \(\Delta \tau \) emission duration

- From a simple hydro calculation:
 \[
 R_{out}^2 = \frac{R^2}{1 + \frac{m}{T_0} u_T^2} + \beta_T^2 \Delta \tau^2 \\
 R_{side}^2 = \frac{R^2}{1 + \frac{m}{T_0} u_T^2}
 \]

- RHIC: ratio is near one \(\rightarrow \) no strong 1st order phase trans.

Beam energy & system size dependence of HBT radii

- quantities related to emission duration and expansion velocity
- non-monotonic patterns
- indication of CEP?

- More precise mapping and further detailed studies required
- Is there any other way to find the critical point?
- Maybe Levy exponent α!
A possible way of finding the critical point

- Generalized Gaussian - Levy-distribution
 - Anomalous diffusion
 - Generalized central limit th.
 - \(\alpha = 2 \) Gaussian, \(\alpha = 1 \) Cauchy

\[
\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3 q e^{iqr} e^{-\frac{1}{2} |qR|^\alpha}
\]

- Csörgő, PoS HIGH-pTLHC08:027 (2008), nucl-th/0903.0669

- Shape of the correlation functions with Levy source:

\[
C_2(|k|) = 1 + \lambda \cdot e^{-(2R|k|)^\alpha} \quad \alpha = 2 : \text{Gaussian} \\
\alpha = 1 : \text{Exponential}
\]

- Critical behaviour \(\rightarrow \) described by critical exponents
- Spatial corr. \(\propto r^{-(d-2+\eta)} \) \(\rightarrow \) defines \(\eta \) exponent
- Symmetric stable distributions (Levy) \(\rightarrow \) spatial corr. \(\propto r^{-1-\alpha} \)
- \(\alpha \) identical to critical exponent \(\eta \)
A possible way of finding the critical point

- Generalized Gaussian - Levy-distribution
 - Anomalous diffusion
 - Generalized central limit th.
 - $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy

$$\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3 q e^{iqr} e^{-\frac{1}{2}|qR|^\alpha}$$

- Csörgő, PoS HIGH-pTLHC08:027 (2008), nucl-th/0903.0669

- Shape of the correlation functions with Levy source:
 $$C_2(|k|) = 1 + \lambda \cdot e^{-(2R|k|)^\alpha}$$
 $\alpha = 2$: Gaussian
 $\alpha = 1$: Exponential

- Critical behaviour \rightarrow described by critical exponents
- Spatial corr. $\propto r^{-(d-2+\eta)}$ \rightarrow defines η exponent
- Symmetric stable distributions (Levy) \rightarrow spatial corr. $\propto r^{-1-\alpha}$

- α identical to critical exponent η
A possible way of finding the critical point

- QCD universality class ↔ 3D Ising

- At the critical point:
 - random field 3D Ising: $\eta = 0.50 \pm 0.05$
 - 3D Ising: $\eta = 0.03631(3)$

- Change in α_{Levy} ↔ proximity of CEP

- Motivation for precise Levy HBT!
PHENIX Levy HBT analysis

A brief overview

- **Dataset:**
 - $\sqrt{s_{NN}}=200$ GeV Au+Au, min. bias, ~ 7 billion events → fine p_T binning

- **Goal:**
 - Detailed shape analysis of 1D two-pion corr. func.
 - Levy source instead of Gaussian → better agreement with data
 - Extraction and analysis of the source parameters
 - Precision measurement of $\lambda(m_T), \alpha_{Levy}(m_T), R_{Levy}(m_T)$
 - Lot of new physics in these results
 - Search for CEP → lower energies
An example correlation function

PHENIX MinBias Au+Au @ $\sqrt{s_{\text{NN}}} = 200$ GeV, $\pi^+\pi^+$, $p_T = 0.2$-0.22 GeV/c

$\lambda = 0.72 \pm 0.02$
$R = 8.74$ fm ± 0.24 fm
$\alpha = 1.16 \pm 0.03$
$\varepsilon = -0.102 \pm 0.005$
$N = 1.0095 \pm 0.0005$

χ^2/NDF = 93/97
conf. level = 59.1%

$C_{\text{Coul}}(\lambda, R, \alpha, k) \times N(1 + \varepsilon k)$
$C_{\text{Levy}}^0(\lambda, R, \alpha, k) \times N(1 + \varepsilon k)$
$N(1 + \varepsilon k)$

$C_{\text{Levy}}^0 = 1 + \lambda \cdot \exp(-2 \cdot R \cdot k^\alpha)$

D. Kincses for PHENIX Zimanyi School 2016
Levy scale parameter R

- Similar decreasing trend as HBT radii
- Hydro behaviour not invalid
- Hard to say whether the $1/R^2$ scaling is linear or not
Levy scale parameter R

- Similar decreasing trend as HBT radii
- Hydro behaviour not invalid
- Hard to say whether the $1/R^2$ scaling is linear or not
Correlation strength λ

- From the Core-Halo model: \[\lambda = \left(\frac{N_C}{N_C + N_H} \right)^2 \]
- Observed decrease at small $m_T \rightarrow$ increase of halo fraction
- Different effects can cause change in λ
 - Resonance effects
 - Partial coherence of the fireball
- Precise measurement is important
The measured value is far from Gaussian ($\alpha = 2$) and expo. ($\alpha = 1$).
Also far from the rfd.3D Ising value at CEP ($\alpha = 0.5$).
More or less constant (at least within systematic errors).
Although the constant fit is statistically not acceptable.
Motivation to do fits with fixed $\alpha = 1.134$.

$\alpha_0 = 1.134 \pm 0.003$
χ^2/ndf = 159/61
Newly discovered scaling parameter \hat{R}

- Empirically found scaling parameter
- Linear in m_T
- Physical interpretation \rightarrow open question
PHENIX Levy HBT analysis preliminary results:

- Dataset: Run-10 200 GeV Au+Au, ~ 7 billion evts.
- Precise measurement of Levy source parameters (R, λ, α)
- New empirically found scaling parameter (\hat{R})
- Future plans: lower energies, 3 pion corr., pion-kaon comparison
- Expected physics info: CEP, partial coherence, resonance effects

Thank you for your attention!