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Introduction and motivation

Hot and dense expanding hydrodynamical system is formed

HBT interferometry: the measurement of identical particle correlations

The width of the corr.function can be related to the size of the source

The strength of the correlation function is the intercept parameter λ

The separate investigation of the 2- and 3-particle correlation can
provide information about the source

The λ can be a�ected by
UA(1) symmetry restoration

partial coherence, the core-halo picture

Aharonov-Bohm-like e�ect
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The HBT-e�ect

The HBT-e�ect was discovered by R. H. Brown and R. Q. Twiss

Independently, pion correlation observed in p + p

Explained by Bose-Einstein symmetrisation by Goldhaber et al.

Let's have a thermalized source and two detectors

From the source two (a and b) wave travel to the detectors

The total amplitude is a+b in the detector A and B

The intensities in the detectors IA = |AA|2 and IB = |AB |2
In QM case with ∆k = kd/L

〈IAIB〉
〈IA〉〈IB〉

− 1 = cos(R∆k)
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Core-halo model

De�nition: C2(p1, p2) = N2(p1,p2)
N1(p1)N1(p2)

Source function can be written in two part: S(x , p) = Sc(x , p) + Sh(x , p)

C2(q,K) = 1+
|S̃(q,K)|2

|S̃(q = 0,K)|2
≈ 1+ λ2

|S̃c(q,K)|2

|S̃c(q = 0,K)|2
where λ2 =

(
Nc

Nc + Nh

)2

λ3 can be de�ned similarly

T. Csörg® Heavy Ion Phys.15:1-80,2002
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Partial coherence

In the core-halo model the core is thermalized and fully incoherent

One can assume that the core may emit bosons coherently:
S(x , p) = S

p
c (x , p) + S ic(x , p) + Sh(x , p)

Momentum dependent core and partially coherent fraction can be
introduced

fc(k) =

∫
Sc(x , k)d4x∫
S(x , k)d4x

pc(k) =

∫
S
p
c (x , k)d4x∫
Sc(x , k)d4x

λs can be expressed with these

C2(0)− 1 = λ2 = f 2c [(1− pc)
2 + 2pc(1− pc)]

C3(0)− 1 = λ3 = 3f 2c [(1− pc)
2 + 2pc(1− pc)] + 2f 3c [(1− pc)

3 + 3pc(1− pc)
2]

The combination: λ3−3λ2
λ
3/2
2

does not depend on the core-halo fraction

T. Csörg® Heavy Ion Phys.15:1-80,2002

Y.M.Sinyukov and Y.Y. Tolstykh Z.Phys. C61 (1994) 593-597
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UA(1) symmetry restoration

QCD: chiral symmetry between u, d and s: UL(3)× UR(3)

UL(3)× UR(3)→ SUL(3)× SUR(3)× UA(1)× UV (1)

Flavour symmetry explicitly broken: eight Goldstone boson:πs, K s and η

UV (1) symmetry not broken: barion number conversation

UA(1) symmetry explicitly broken ninth Goldstone boson: η′

UA(1) symmetry might be restored in a hot dense matter like sQGP

How to observe? (See the �rst session on Monday!)
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Possible observation of UA(1) symmetry restoration

Hot dense matter: mη′ drops → more η′ is produced

From η′ → π+ + π+ + π− + π− + π0 more π are produced

The πs have pt ≈ 150− 200 MeV and contribute to the halo

πs from the halo do not correlated with the core's πs

Value of the λ drops

T. Csörg® Heavy Ion Phys.15:1-80,2002
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Aharonov-Bohm e�ect in particle correlations

Aharonov-Bohm e�ect:

Early observation: electrically charged particle is a�ected by an EM
potential in a region where the E and B are zero.
Experimental veri�cation by e.g. Chambers (1960 PRL.5), Tonomura
et al. (1986 PRL.56)
If a particle moves on a closed path in a �eld it picks up path
dependent phase factor

Aharonov-Bohm e�ect in our case:

The correlation can be obtained from a closed-path
The result is sensitive to the �uxes going through the closed path
Phenomenologically the propagating pion waves pick up phases
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Two pion correlation in a random �eld

Aharonov-Bohm-like e�ect in our case:

Random phase have to be applied to the wave-functions Ψa(r), Ψb(r)
The time average of the two-particle wave function gets a phase
φ: the total phase picked up. Let introduce ∆k = kd/L!

〈|Ψa,b(rA, rB)|2〉
〈|Ψa(r)|2〉〈|Ψb(r)|2〉

− 1 = cos (R∆k + φ)

Can be regarded as a 0-centered Gaussian: e
− φ

2σ2
φ

Average on φ and at ∆k = 0

〈|Ψa,b(rA, rB)|2〉
〈|Ψa(r)|2〉〈|Ψb(r)|2〉

− 1 = e−
σ2φ
2 = λ2

For three particle 〈|Ψa,b(rA, rB , rC )|2〉

〈|Ψa,b,c |2〉
〈|Ψa|2〉〈|Ψb|2〉〈|Ψb|2〉

− 1 = 3e−
σ2φ
2 + 2e−

2σ2φ
9 = λ3
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Toy model

Hubble expanding source made of uniformly distributed charges with a
probe charge in the middle of the source
Probe particle: given momentum with lot of random charge
distribution
Relativistic motion of probe particle through Coulomb �eld of the
expanding charge cloud
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Toy model

Charge cloud accelerates or decelerates probe

Time to reach a given location �uctuates

The σt(pinit) can be yield from �ts

Random phase shift equivalent to time shift: σt
p2

~
√
m2+p2

= σφ
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Toy model � λ2, λ3

Midrapidity p → pt
The σt function is known from the �t

The σφ = σtp2t
~
√
m2+p2

from the �t σφ ∼ p−0.55t

~
√
m2+p2

Plot the derived: λ2 → e−
σ2

2 and λ3 → 3e−
σ2

2 + 2e−
2σ2

9

To be compared to experimental results
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Toy model � a combination of λs

In our calculation Nch = 100 and Rinit = 5 fm
Let us introduce κ3 = λ3−3λ2

λ
3/2
2

Quanti�es �pure� three-particle correlations
Does not depend on core/halo fraction!

E.g. core/halo + partial coherence case κ3 = 2((1−pc)3+3pc(1−pc)2)
((1−pc)2+2pc(1−pc))3/2
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Summary

The interaction with random �eld can play role in the
HBT-interferometry

Theoretically can be calculated by introducing random phase on the
path of the particle

Phase distribution determined from toy model simulations

Phase distribution width decreases with increasing momentum

The e�ect on two- and three-particle correlations di�erent

Separating the e�ect: κ3 = ... = 2 if only core/halo

κ3 < 2 if nonzero coherent fraction

Our results: κ3 > 2 if pc = 0

Thank you for your attention!
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Toy model � σ(ρch)

How does the width depend on the ρch?

Distribute di�erent number of charges in the source size R = 5 fm

The width depends more-or-less linearly on the density
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