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Introduction

Introduction

The nucleon-sigma-terms are of
significant interest for dark-matter
searches, as they determine the
coupling of several dark matter
candidates to hadronic matter.

The nucleon sigma terms are defined
as

σπN = f NudMN = mud
〈N | ūu + d̄d | N〉

2MN

σsN = f Ns MN = ms
〈N | s̄s | N〉

2MN
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Introduction

Sigma terms and dark matter

Consider the spin independent interaction of dark matter WIMP particles
χ with ordinary matter. We have an interaction between the WIMP and
the quarks that is described by a Lagrangian of the following type:

L = λqχ̄χq̄q

The cross section of an interaction with a nucleon is given by

σSI ∝ (Zfp + (A− Z )fn)2

with
fN
MN

=
∑
q

f Nq
λq
mq

.

Hence the quark constens - or sigma terms - are of interest to dark
matter detection experiments.
[1] J. R. Ellis, K. A. Olive and C. Savage, Phys. Rev. D 77 (2008) 065026 doi:10.1103/PhysRevD.77.065026 [arXiv:0801.3656 [hep-ph]].
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Introduction

Lattice QCD

QCD Lagrangian in the continuum:

L = ψ̄(iγµDµ −m)ψ − 1

4
Fa,µνF

µν
a

Lattice field theory is a method to non-perturbatively calculate quantities
in a QFT.

Fields on the lattice Define Fermion fields ψ̄ and ψ on a regular
space-time-lattice. Represent SU(3) gauge
fields by link variables Uµ.

Using this regularization the euclidean path
integral becomes a very high but finite
dimensional integral.

⇒ Use a computer to solve it!

Lukas Varnhorst Lattice computation of the nucleon sigma terms 4 of 20



Introduction

Lattice QCD

Fermion fields in the path integral can be integrated out exactly

〈O〉 =
1

Z

∫
DUDψ̄DψO e−SG [U]−SF [U,ψ̄,ψ] =

1

Z

∫
DU O detM[U]e−SG [U]

High dimensional integral over SU(3) degrees of freedom at every lattice
point. Use improtrance sampling.

Typical workflow:
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Introduction

Methods of evaluation

There are two methods to evaluate the nucleon sigma terms on the
lattice:

i. The direct method: Evaluate matrix elements directly. Needs
three-point functions

&

ii. Use the Feynman-Hellmann theorem to calculate the sigma term:

f Nud =
mud

MN

∂MN

∂mud
and f Ns =

ms

MN

∂MN

∂ms

Only two-point functions necessary! This is the strategy pursued in
this work.
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Introduction

General strategy

The general strategy of the calculation goes as follows:

i. Generate a suitable set of QCD configuration

ii. Measure two-point functions needed for the extraction of masses.

iii. Fit two-point function to determine masses per ensemble.

iv. Using the masses from all ensembles to fit the nucleon mass as
function of quark mass.

v. From the fit function determine the derivatives.
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The lattice data

Setup

We use a tree-level improved Symmanzik gauge
action and a tree-level improved clover Wilson
fermion action with Nf = 2 + 1 and two levels of
HEX smearing.

This lattice action is supposed to have cut-off
effects of order αsa. Often a2 effects are dominant.

We used simulations at 5 different lattice spacing (
0.116 fm to 0.054 fm) and extrapolated results to
the continuum. This extrapolation has been
performed both with αsa and a2 to estimate the
systematic uncertainty.
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The lattice data

The data landscape

Landscape in the M2
π and M2

K ,red = 2M2
K −M2

π plane:
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The lattice data

Extracting hadron masses

Suppose Ō and O are operators which create and annihilate a hadron H.
The the correlation function between the two operators behaves as:

C (t) = 〈Ō(t)O(0)〉 =
∑
k

〈0 | O | k〉〈k | O† | 0〉e−t∆Ek

We can define a
effective mass via

meff(t+
1

2
) = ln

C (t)

C (t + 1)

and search for a
plateau.
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The lattice data

Extracting hadron masses

Even better: Fit correlation functions with

C (t) =

{
A cosh(−m(t − Nt/2)) for mesons

A sinh(−m(t − Nt/2)) for baryons

The question is: From which tmin on
should the fit start?

We have many ensembles: We can
make a Kolmogorov-Smirnov-Test to
check wether the χ2 values are
properly distributed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s=1.040 fm, p=0.037, n=42

s=1.140 fm, p=0.277, n=42

s=1.240 fm, p=0.829, n=42

π

Lukas Varnhorst Lattice computation of the nucleon sigma terms 11 of 20



Fitting the lattice data

Parameterizing the nucleon mass

To leading order the nucleon mass can be fitted with the ansatz

MN = (1 + f scale(a))(1 + f fvol(Mπ, L))·
· aN0 (1 + aN1 (mud −m

(Φ)
ud ) + aN2 (ms −m(Φ)

s ) + · · · )

to estimate systematic uncertainties we want to vary the fit function:

i. Continuum extrapolation may show an f scale(a) = a2 or an
f scale(a) = αs(a)a behavior.

ii. The next-to-leading term in mud can be assumed to be m2
ud or m1.5

ud .

iii. Finite volume effects can be parametrized via

f fvol(Mπ, L) =
√

Mπ

L3 e
−MπL or via f fvol(Mπ, L) = e−MπL

iv. There might be higher order contribution in ms
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Fitting the lattice data

The ratio difference method

Quark masses can be defined in several ways:

mVWI
j =

1

ZS
mW

j

(
1− 1

2
bSam

W
j − b̄Sa trM +O(a2)

)
mAWI

j =
ZA

ZP
mPCAC

j

(
1 + (bA − bP)amW

j + (b̄A − b̄P)a trM +O(a2)
)

In practice it is advantageous to use the ratio-difference-method. Here
one constructs quantities (and their improved counterparts [1])

dij = a(mW
i −mW

j ) and rij =
mPCAC

i

mPCAC
j

and from these one can extract the quark masses:

amrd,r
i =

1

ZS
amrd

i =
1

ZS

rijdij
rij − 1

and amrd,r
j =

1

ZS
amrd

j =
1

ZS

dij
rij − 1

.

[1] S. Durr et al., “Lattice QCD at the physical point: Simulation and analysis details,” JHEP 1108 (2011) 148

doi:10.1007/JHEP08(2011)148 [arXiv:1011.2711 [hep-lat]].
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Fitting the lattice data

Renormalization

amrd,r
i =

1

ZS
amrd

i =
1

ZS

rijdij
rij − 1

and amrd,r
j =

1

ZS
amrd

j =
1

ZS

dij
rij − 1

.

We still need to know ZS . For these ensembles they have already been
determined [1]. From this we can define

mRGI
i =

amrd
i

aZs(1 + f scaleq,i (a))

There quark masses can then be used in the parametrization of the
nucleon mass:

MN = (1 + f scale(a))(1 + f fvol(Mπ, L))·
· aN0 (1 + aN1 (mRGI

ud −m
(Φ)RGI
ud ) + aN2 (mRGI

s −m(Φ)RGI
s ) + · · · )

[1] S. Durr et al., “Lattice QCD at the physical point: Simulation and analysis details,” JHEP 1108 (2011) 148

doi:10.1007/JHEP08(2011)148 [arXiv:1011.2711 [hep-lat]].
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Fitting the lattice data

The nucleon mass dependence

The following plots show a typical result of the nucleon mass
dependence. The datapoints have been projected to the physical point in
all but the shown direction.
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Fitting the lattice data

Uncertainties

To estimate the systematic uncertainties we carry out a set of analyses,
each of which is valid. We varied:

We used the plateau-range as determined by the
Kolmogorov-Smirnov-test and or an additional plateau-range
starting 0.1 fm later.

We applied two different pion mass cuts: 320 MeV and 480 MeV.

We varied the higher order term in the fit functions

We replaced Taylor expansion by Padé expansions of the same order.

We performed continuum extrapolations with O(a2) or O(αsa).

Altogether we have 192 different analyses. We make a histogram of thees
analyses, weight them by the AIC weight, and determine the spread.

For the statistical error we have performed a bootstrap analysis.
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Fitting the lattice data

Results
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f Nud = 0.0405(40)(35)

f NsN = 0.113(45)(40)

σπN = 38(3)(3) MeV

σsN = 105(41)(37) MeV
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Individual quark contents

Individual p- and n-quark-contents

One can rewrite the Individual quark contents as

f pu/d =

(
1

2
∓ δm

4mud

)
fud,p +

(
1

4
∓ mud

2δm

)
δm

2M2
p

〈p | d̄d − ūu | p〉.

We use

H = Hiso + Hδm Hδm =
δm

2

∫
d3x(d̄d − ūu)

to derive

∆QCDMN =
δm

2Mp
〈p | ūu − d̄d | p〉

Using there relations one can derive (r = mu/md)

f p/nu =

(
r

1 + r

)
f Nud ±

1

2

(
r

1− r

)
∆QCDMN

MN
+O(δm2,mudδm)

f
p/n
d =

(
1

1 + r

)
f Nud ∓

1

2

(
1

1− r

)
∆QCDMN

MN
+O(δm2,mudδm)
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Individual quark contents

Individual p- and n-quark-contents

f p/nu =

(
r

1 + r

)
f Nud ±

1

2

(
r

1− r

)
∆QCDMN

MN
+O(δm2,mudδm)

f
p/n
d =

(
1

1 + r

)
f Nud ∓

1

2

(
1

1− r

)
∆QCDMN

MN
+O(δm2,mudδm)

Plugging in known values for r [1] and ∆QCDMN [2] one gets

f pu = 0.0139(13)(12)

f nu = 0.0116(13)(11)

f pd = 0.0253(28)(24)

f nd = 0.0302(28)(25)

[1] S. Aoki et al., “Review of lattice results concerning low-energy particle physics,” arXiv:1607.00299 [hep-lat].

[2] S. Borsanyi et al., “Ab initio calculation of the neutron-proton mass difference,” Science 347 (2015) 1452 doi:10.1126/science.1257050

[arXiv:1406.4088 [hep-lat]].
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Summary

Summary

Quark content/Sigma terms:

fudN = 0.0405(40)(35)

fsN = 0.113(45)(40)

σπN = 38(3)(3) MeV

σsN = 105(41)(37) MeV

Individual quark contents:

f pu = 0.0139(13)(12)

f nu = 0.0116(13)(11)

f pd = 0.0253(28)(24)

f nd = 0.0302(28)(25)

Special thanks to all my collaborators: S. Durr, Z. Fodor, C.
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Portelli, K. K. Szabo, C. Torrero, B. C. Toth

More information: S. Durr et al., Phys. Rev. Lett. 116 (2016) no.17,
172001 doi:10.1103/PhysRevLett.116.172001 [arXiv:1510.08013
[hep-lat]].
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