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Introduction

Motivation

How fluidity of sQGP determine:

how simple effects influence time evolution of asymmetries

effects which can’t be discussed analytically

=⇒ Numerical hydrodynamics: realistic models, but effects get mixed

=⇒ Initial condition: close to exact solution, but more realistic

Published: Int. J. Mod. Phys. A 31, 1645016 (2016)
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Equations of hydrodynamics

Equations of hydrodynamics

Nonrelativistic :

Barion number conservation:
∂ρ

∂t
+∇ρv = 0

Impulse conservation:

ρ
(∂v

∂t
+ (v∇)v

)
= −∇p + µ∆v +

(
ζ +

µ

3

)
∇(∇v ) + f

Energy conservation:
∂ε

∂t
+∇εv = −p∇v +∇(σv)

ρ barion number density, v velocity field, ε energy density, p pressure
distribution

Relativistic hydrodynamics:

T µν =
(
ε + p

)
uµuν − pgµν, ∂µT

µν = 0
T µν energy-impulse tensor, uµ four-velocity, gµν metric tensor

Equation of state: ε = κ(T )p (κ = 1/c2
s , κ = 3/2 ideal gas)

Advection form: ∂tQ(ρ, ε, v ) + ∂xF (Q) = 0 (F flux)

Attila Bagoly (ELTE) Numerical hydrodynamics 2016. december 8. 4 / 20



Numerical scheme

Numerical scheme

Mid rapidity: distributions have maximum: 2 + 1 dimension

Numerical solution: discretization ← finite volume method

Problem: we need fluxes between grid points → approximations

Instability: perturbation, vanish in grid points → CFL condition

2 spatial dimension complicated → operator splitting

Viscosity: ideal substep + viscous substep (operator splitting)
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Numerical scheme MUSTA

MUSTA method

nth time step: Q
(0)
i ≡ Qn

i , Q
(0)
i+1 ≡ Qn

i+1

`th predicted values: Q
(`)
i , F

(`)
i ≡ F

(
Q

(`)
i

)
Intermediate value and flux:

Q
(`)

i+ 1
2

=
1

2

[
Q

(`)
i +Q

(`)
i+1

]
− 1

2

∆t

∆x

[
F
(`)
i+1 − F

(`)
i

]
, F

(`)
M ≡ F

(
Q

(`)

i+ 1
2

)
Corrected inner flux:

F
(`)

i+ 1
2

=
1

4

[
F
(`)
i+1 + 2F

(`)
M + F

(`)
i −

∆x

∆t

(
Q

(`)
i+1 −Q

(`)
i

)]
Next prediction to Q values to better approximation of flux:

Q
(`+1)
i = Q

(`)
i −

∆t

∆x

[
F
(`)

i+ 1
2

− F
(`)
i

]
k step → Fi+ 1

2
= F

(k)

i+ 1
2

=⇒ Qn+1
i = Qn

i − ∆t
∆x (Fi+ 1

2
− Fi− 1

2
)

Method published by E. F. Toro et al, 2006, J. Comp. Phys
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Numerical scheme Code testing

Code testing

Exact solutions (Csörgő et al, PhysRevC67)

Relative difference between numerical and exact solution:∫
|ρanalytical(t, x)− ρnumerical(t, x)|d2x

/ ∫
ρanalytical(t, x)d2x

Relativistic code: tested with Karpenko’s hydro code
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Numerical scheme Initial condition

Initial condition

Variables: space dependency only in scale variable, asymmetry in this
variable

Number density, pressure ∝ exp (−s)
Scale variable:

s =
r2

R2

(
1 + ε2 cos(2φ) + ε3 cos(3φ) + ε4 cos(4φ)

)

Velocity: Hubble-velocity field or 0

Effect of pressure gradient: p ∝ exp (−cp · s)
Constant pressure, multipole exact solution: Csanád és Szabó,
Phys.Rev. C90 (2014) 054911Attila Bagoly (ELTE) Numerical hydrodynamics 2016. december 8. 8 / 20



Numerical scheme Initial condition

More realistic initial condition

Gaussian decay → values in full space (Ω)

Better model: Gaussian decay in A ⊂ Ω, 0 in Ω \ A

Problem: numerical instability at ∂A (non existing derivates)

Idea: exp(−s)→ smooth function, example:

f (x) =

{
e
− 1

1−x2 if |x | < 1,

0 otherwise

Member of C∞ but not good for analyzing asymmetries

Other idea: keep exp−s distribution for A, 0 for Ω \ A

But: convolved with f (x) → smooth function, derivates will be OK
at boundary
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Numerical scheme Description of asymmetries

Description of asymmetries

Scale variable: s = r2

R2

(
1 + ε2 cos(2φ) + ε3 cos(3φ) + ε4 cos(4φ)

)
Definition of asymmetry parameters: εn = 〈cos(nφ)〉ρ/v/p

εn (newly introduced) 6= εm (in scale variable)

Initially (t = 0) connection between εn and εm can be derived (Taylor
expansion):

ε1 = 0 + ε3(ε2 + ε4) +O(ε4)

ε2 = −ε2 + ε2ε4 + ε2 ∑n ε2
n +O(ε4)

ε3 = −ε3 + ε3 ∑n ε2
n +O(ε4)

ε4 = −ε4 +
1
2 ε2

2 − ε4 ∑n ε2
n +O(ε4)
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Numerical scheme Description of asymmetries

Generalize the asymmetry parameters

ε i evolve in time, it freezes out with phase transition → vn parameters

Measuring momentum space asymmetry: average for reaction planes

Reaction plane can be introduced in scale variable:

s =
r2

R2

(
1 + ε2 cos(2(φ− ψ2)) + ε3 cos(3(φ− ψ3)) + ε4 cos(4(φ− ψ4))

)

More realistic: ε i → 〈ε i〉ψ

We ran simulations with a lot of ψ2, ψ3 ψ4 → 〈ε i 〉ψ
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Nonrelativistic results Effect of viscosity

Effect of viscosity

Energy- and number-distribution: slower disappearance
Viscosity: slower flow

Velocity field: faster disappearance
Parts with big/small asymmetry feels different forces: big differences
vanishes out fast

Plot: ε1 red, ε2 green, ε3 blue, ε4 magenta
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Nonrelativistic results Effect of viscosity

Effect of viscosity: time evolution of energy field
µ
=

0
M

eV
fm

/
c

µ
=

10
M

eV
fm

/
c
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Nonrelativistic results Effect of viscosity

Effect of viscosity: time evolution of velocity field
µ
=

0
M

eV
fm

/
c

µ
=

10
M

eV
fm

/
c
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Nonrelativistic results Effect of speed of sound

Effect of speed of sound

In every distribution: time evolution of asymmetries gets slower

Speed of pressure waves decrease → equalization takes more time

Speeds: c2
s = 1 or 0, 4 or 0, 33 or 0, 25
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Nonrelativistic results Pressure gradient

Pressure gradient

Every distribution: asymmetries disappear faster

Bigger gradient: faster flow

Number density ∝ exp (−s)

Pressure ∝ exp (−ce · s)
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Relativistic results Effect of speed of sound

Effect of speed of sound

In every distribution: time evolution of asymmetries gets slower

Speed of pressure waves decrease → equalization takes more time
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Relativistic results Pressur

Effect of pressure

Every distribution: asymmetries disappear faster

Bigger gradient: faster flow

Number density ∝ exp (−s)

Pressure ∝ exp (−cp · s)
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Relativistic results Freeze-out

Freeze-out

Maxwell-Jüttner type source function:

S(x , p)d4x = N n(x) exp

(
− pµu

µ

T (x)

)
H(τ)pµd

3 uµd
3x

u0 dτ

Measurable quantity:
vn(pt) = 〈cos(nϕ)〉N = 1

N(pt )

∫ 2π
0 N(pt , ϕ) cos(nϕ)dϕ

Momentum space: speed of
sound has a big effect

Sensitive to speed of sound:
time of freeze-out
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Relativistic results Freeze-out

Effect of speed of sound

In every distribution: time evolution of asymmetries gets slower

Speed of pressure waves decrease → equalization takes more time
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Summary

Summary

Motivation: simple effects how affect the time evolution of
asymmetries

No much chance for analytic discussion, so we used numerical
methods

Initial condition is very close to analytic solution, but more realistic
(with asymmetries)

More realistic: cut the distributions → smoothing with convolution

Decreasing the speed of sound → slower time evolution of
asymmetries, freeze-out later

Viscosity makes the time evolution slower in energy- and
number-distribution, faster in velocity field

Published: Int. J. Mod. Phys. A 31, 1645016 (2016)
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Relativistic versus nonrelativistic hydrodynamics Compare

Relativistic versus nonrelativistic hydrodynamics

Relativistic: asymmetry get washed out slower

Nonrelativistic: bigger asymmetry in velocity field → bigger derivates
→ faster time evolution
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Relativistic versus nonrelativistic hydrodynamics

Relativistic versus nonrelativistic hydrodynamics
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Relativistic versus nonrelativistic hydrodynamics Relativistic code test

Relativistic code test: number-density
κ = 2 and κ = 4
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Relativistic versus nonrelativistic hydrodynamics Relativistic code test

Relativistic code test: pressure
κ = 2 and κ = 4
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Relativistic versus nonrelativistic hydrodynamics Relativistic code test

Relativistic code test: Velocity-field
κ = 2 és κ = 4
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Relativistic versus nonrelativistic hydrodynamics Testing of code

Testing of Code

Exact solution (Csörgő et al, PhysRevC67):

s =
x2

X 2(t)
+

y2

Y 2(t)

ρ = ρ0
V0

V
e−s , p = p0

(
V0

V

)1+ 1
κ

e−s

v (t, r ) =

(
Ẋ

X
x ,

Ẏ

Y
y

)

ẌX = Ÿ Y =
Ti

m

(
V0

V

) 1
κ

, V = X (t)Y (t)
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Relativistic versus nonrelativistic hydrodynamics Operator splitting

Operator splitting

∂tu = Au + Bu

u(t + ∆t) = e∆t(A+B)u(t)

uLie(t + ∆t) = e∆tAe∆tBu(t)

uStrang(t + ∆t) = e
1
2 ∆tAe∆tBe

1
2 ∆tAe∆tBu(t)
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Relativistic versus nonrelativistic hydrodynamics Viscous hydrodynamics

Viscous hydrodynamics

∂tQ + ∂xFid(Q) + ∂yGid(Q) + ∂xFvisc(Q, ∂Q) + ∂yGvisc(Q, ∂Q) = 0

=⇒ operator splitting

Ideal step: ∂tQ + ∂xFid(Q) + ∂yGid(Q) = 0→ Q id, ∂Q id

→ Fvisc,Gvisc

Viscous step: ∂tQ + ∂xFvisc(Q id, ∂Q id) + ∂yGvisc(Q id, ∂Q id) = 0
→ Q
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