Time evolution of the spatial anisotropies in heavy ion collisions

Attila Bagoly, Máté Csanád

Eötvös Loránd University Department of Atomic physics

16. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS 2016. december 8.

イロン (同) (こう) (う) (う)

Motivation

How fluidity of sQGP determine:

how simple effects influence time evolution of asymmetries

effects which can't be discussed analytically

 \implies Numerical hydrodynamics: realistic models, but effects get mixed

 \implies Initial condition: close to exact solution, but more realistic

Published: Int. J. Mod. Phys. A 31, 1645016 (2016)

◆白み◇◆得な◇◆言み◇◆言み◇◇言

Table of contents

- **1** Equations of hydrodynamics
- 2 Numerical method
- 3 Code testing
- 4 Initial conditions
- 5 Reaction planes
- 6 Nonrelativistic results
- 7 Relativistic results

8 Hadronization

くちょう 通い くうかく すまい しき

Equations of hydrodynamics

- Nonrelativistic :
 - Barion number conservation: $\frac{\partial \rho}{\partial t} + \nabla \rho \mathbf{v} = 0$

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v}\right) = -\nabla p + \mu\Delta\mathbf{v} + \left(\zeta + \frac{\mu}{3}\right)\nabla(\nabla\mathbf{v}) + \mathbf{f}$$

Formulation: $\frac{\partial\varepsilon}{\partial\varepsilon} + \nabla c\mathbf{v} = -p\nabla\mathbf{v} + \nabla(\sigma\mathbf{v})$

- Relativistic hydrodynamics:

$$\mathcal{T}^{\mu
u}=ig(arepsilon+etaig)u^{\mu}u^{
u}-eta g^{\mu
u},\quad\partial_{\mu}\mathcal{T}^{\mu
u}=0$$

T^{μν} energy-impulse tensor, u^μ four-velocity, g^{μν} metric tensor
 Equation of state: ε = κ(T)p (κ = 1/c_s², κ = 3/2 ideal gas)
 Advection form: ∂_tQ(ρ, ε, **v**) + ∂_xF(Q) = 0 (F flux)

Numerical scheme

- Mid rapidity: distributions have maximum: 2+1 dimension
- Numerical solution: discretization ← finite volume method
- Problem: we need fluxes between grid points \rightarrow approximations
- Instability: perturbation, vanish in grid points \rightarrow CFL condition
- 2 spatial dimension complicated \rightarrow operator splitting
- Viscosity: ideal substep + viscous substep (operator splitting)

MUSTA method

•
$$n^{\text{th}}$$
 time step: $Q_i^{(0)} \equiv Q_i^n$, $Q_{i+1}^{(0)} \equiv Q_{i+1}^n$

• ℓ^{th} predicted values: $Q_i^{(\ell)}$, $F_i^{(\ell)} \equiv F(Q_i^{(\ell)})$ • Intermediate value and flux:

$$Q_{i+\frac{1}{2}}^{(\ell)} = \frac{1}{2} \Big[Q_i^{(\ell)} + Q_{i+1}^{(\ell)} \Big] - \frac{1}{2} \frac{\Delta t}{\Delta x} \Big[F_{i+1}^{(\ell)} - F_i^{(\ell)} \Big], \quad F_M^{(\ell)} \equiv F \big(Q_{i+\frac{1}{2}}^{(\ell)} \big)$$

Corrected inner flux:

$$F_{i+\frac{1}{2}}^{(\ell)} = \frac{1}{4} \Big[F_{i+1}^{(\ell)} + 2F_{M}^{(\ell)} + F_{i}^{(\ell)} - \frac{\Delta x}{\Delta t} \Big(Q_{i+1}^{(\ell)} - Q_{i}^{(\ell)} \Big) \Big]$$

Next prediction to Q values to better approximation of flux:

$$Q_{i}^{(\ell+1)} = Q_{i}^{(\ell)} - \frac{\Delta t}{\Delta x} \Big[F_{i+\frac{1}{2}}^{(\ell)} - F_{i}^{(\ell)} \Big]$$

• $k \operatorname{step} \to F_{i+\frac{1}{2}} = F_{i+\frac{1}{2}}^{(k)} \Longrightarrow Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (F_{i+\frac{1}{2}} - F_{i-\frac{1}{2}})$ • Method published by E. F. Toro et al, 2006, J. Comp. Phys

Code testing

- Exact solutions (Csörgő et al, PhysRevC67)
- Relative difference between numerical and exact solution:

$$\int |\rho_{\text{analytical}}(t,\underline{x}) - \rho_{\text{numerical}}(t,\underline{x})| d^2x \Big/ \int \rho_{\text{analytical}}(t,\underline{x}) d^2x$$

Relativistic code: tested with Karpenko's hydro code

Attila Bagoly (ELTE)

Initial condition

- Variables: space dependency only in scale variable, asymmetry in this variable
- Number density, pressure $\propto \exp(-s)$
- Scale variable:

$$s = \frac{r^2}{R^2} \left(1 + \frac{\epsilon_2}{\cos(2\phi)} + \frac{\epsilon_3}{\cos(3\phi)} + \frac{\epsilon_4}{\cos(4\phi)} \right)$$

- Velocity: Hubble-velocity field or 0
- Effect of pressure gradient: $p \propto \exp{(-c_p \cdot s)}$
- Constant pressure, multipole exact solution: Csanád és Szabó, Attila Bagoly (ELTE) Numerical hydrodynamics 2016. december 8. 8 / 20

Initial condition

More realistic initial condition

- Gaussian decay \rightarrow values in full space (Ω)
- Better model: Gaussian decay in $\mathcal{A} \subset \Omega$, 0 in $\Omega \setminus \mathcal{A}$
- Problem: numerical instability at ∂A (non existing derivates)
- Idea: $exp(-s) \rightarrow smooth function, example:$

$$f(x) = egin{cases} e^{-rac{1}{1-x^2}} & ext{if } |x| < 1, \ 0 & ext{otherwise} \end{cases}$$

- Member of C^{∞} but not good for analyzing asymmetries
- Other idea: keep exp -s distribution for \mathcal{A} , 0 for $\Omega \setminus \mathcal{A}$
- But: convolved with $f(x) \rightarrow$ smooth function, derivates will be OK at boundary くちゃく (雪) くくまう (小声) = 900 Attila Bagoly (ELTE) 2016. december 8. 9 / 20

Description of asymmetries

- Scale variable: $s = \frac{r^2}{R^2} (1 + \epsilon_2 \cos(2\phi) + \epsilon_3 \cos(3\phi) + \epsilon_4 \cos(4\phi))$
- Definition of asymmetry parameters: $\varepsilon_n = \langle \cos(n\phi) \rangle_{\rho/\nu/p}$
- ε_n (newly introduced) $\neq \epsilon_m$ (in scale variable)
- Initially (t = 0) connection between ε_n and ε_m can be derived (Taylor expansion):

•
$$\varepsilon_1 = 0 + \varepsilon_3(\varepsilon_2 + \varepsilon_4) + \mathcal{O}(\varepsilon^4)$$

• $\varepsilon_2 = -\varepsilon_2 + \varepsilon_2\varepsilon_4 + \varepsilon_2\sum_n \varepsilon_n^2 + \mathcal{O}(\varepsilon^4)$
• $\varepsilon_3 = -\varepsilon_3 + \varepsilon_3\sum_n \varepsilon_n^2 + \mathcal{O}(\varepsilon^4)$
• $\varepsilon_4 = -\varepsilon_4 + \frac{1}{2}\varepsilon_2^2 - \varepsilon_4\sum_n \varepsilon_n^2 + \mathcal{O}(\varepsilon^4)$

イロシ 不同 シ イヨン イヨン ヨー つうつ

Generalize the asymmetry parameters

- ε_i evolve in time, it freezes out with phase transition $\rightarrow v_n$ parameters
- Measuring momentum space asymmetry: average for reaction planes
- Reaction plane can be introduced in scale variable:

$$s = \frac{r^2}{R^2} \Big(1 + \epsilon_2 \cos(2(\phi - \psi_2)) + \epsilon_3 \cos(3(\phi - \psi_3)) + \epsilon_4 \cos(4(\phi - \psi_4)) \Big)$$

- More realistic: $\varepsilon_i
 ightarrow \langle \varepsilon_i
 angle_\psi$
- We ran simulations with a lot of ψ_2 , $\psi_3 \psi_4 \rightarrow \langle \varepsilon_i \rangle_{\psi}$

イロシ 不同 シ イヨン イヨン ヨー つうつ

Effect of viscosity

- Energy- and number-distribution: slower disappearance
 - Viscosity: slower flow
- Velocity field: faster disappearance
 - Parts with big/small asymmetry feels different forces: big differences vanishes out fast
- Plot: ε_1 red, ε_2 green, ε_3 blue, ε_4 magenta

Attila Bagoly (ELTE)

Effect of viscosity: time evolution of energy field

Numerical hydrodynamics

Effect of viscosity: time evolution of velocity field

Attila Bagoly (ELTE)

Numerical hydrodynamics

2016. december 8. 14 / 20

それないと聞いてもほうへんぽ

Effect of speed of sound

In every distribution: time evolution of asymmetries gets slower

- \blacksquare Speed of pressure waves decrease \rightarrow equalization takes more time
- Speeds: $c_s^2 = 1$ or 0, 4 or 0, 33 or 0, 25

Attila Bagoly (ELTE)

Pressure gradient

Every distribution: asymmetries disappear faster

- Bigger gradient: faster flow
- Number density $\propto \exp(-s)$
- Pressure $\propto \exp(-c_e \cdot s)$

Effect of speed of sound

In every distribution: time evolution of asymmetries gets slower

• Speed of pressure waves decrease \rightarrow equalization takes more time

Attila Bagoly (ELTE)

くちゃく (雪) くくまう (小声)

Pressur

Effect of pressure

Every distribution: asymmetries disappear faster

- Bigger gradient: faster flow
- Number density $\propto \exp(-s)$
- Pressure $\propto \exp(-c_p \cdot s)$

Freeze-out

- Maxwell-Jüttner type source function: $S(x, p)d^4x = Nn(x) \exp\left(-\frac{p_\mu u^\mu}{T(x)}\right) H(\tau) p_\mu d^3 \frac{u_\mu d^3 x}{u^0} d\tau$
- Measurable quantity: $v_n(p_t) = \langle \cos(n\varphi) \rangle_N = \frac{1}{N(p_t)} \int_0^{2\pi} N(p_t, \varphi) \cos(n\varphi) d\varphi$

- Momentum space: speed of sound has a big effect
- Sensitive to speed of sound: time of freeze-out

くロン (有) (() きいくきょく) き

Freeze-out

Effect of speed of sound

In every distribution: time evolution of asymmetries gets slower

• Speed of pressure waves decrease \rightarrow equalization takes more time

そロシンを聞いてもほう をほう

Summary

- Motivation: simple effects how affect the time evolution of asymmetries
- No much chance for analytic discussion, so we used numerical methods
- Initial condition is very close to analytic solution, but more realistic (with asymmetries)
- More realistic: cut the distributions \rightarrow smoothing with convolution
- Decreasing the speed of sound \rightarrow slower time evolution of asymmetries, freeze-out later
- Viscosity makes the time evolution slower in energy- and number-distribution, faster in velocity field
- Published: Int. J. Mod. Phys. A 31, 1645016 (2016)

Relativistic versus nonrelativistic hydrodynamics

- Relativistic: asymmetry get washed out slower
- \blacksquare Nonrelativistic: bigger asymmetry in velocity field \rightarrow bigger derivates \rightarrow faster time evolution

そうかい (聞い) (うう) (うう)

Numerical hydrodynamics

Attila Bagoly (ELTE)

Relativistic versus nonrelativistic hydrodynamics

くロン (雪) (言) (言)

Numerical hydrodynamics

Relativistic code test: number-density $\kappa = 2$ and $\kappa = 4$

1 3

イロン (作用) イヨン イヨン

Relativistic code test: pressure $\kappa = 2$ and $\kappa = 4$

Э

くロシン(雪)シン(言)シン(言)シ

Relativistic code test: Velocity-field $\kappa = 2$ és $\kappa = 4$

э

くロン (小型・) (小型・)

Testing of Code

Exact solution (Csörgő et al, PhysRevC67):

$$s = \frac{x^2}{X^2(t)} + \frac{y^2}{Y^2(t)}$$

$$\rho = \rho_0 \frac{V_0}{V} e^{-s}, \quad p = \rho_0 \left(\frac{V_0}{V}\right)^{1+\frac{1}{\kappa}} e^{-s}$$

$$\mathbf{v}(t, \mathbf{r}) = \left(\frac{\dot{X}}{X}x, \frac{\dot{Y}}{Y}y\right)$$

$$\ddot{X}X = \ddot{Y}Y = \frac{T_i}{m} \left(\frac{V_0}{V}\right)^{\frac{1}{\kappa}}, \quad V = X(t)Y(t)$$

Attila Bagoly (ELTE)

くちょう 通い くうかく すまい しき

Operator splitting

$$\partial_t u = Au + Bu$$

$$u(t + \Delta t) = e^{\Delta t(A+B)}u(t)$$

$$u_{\rm Lie}(t+\Delta t) = e^{\Delta tA}e^{\Delta tB}u(t)$$

$$u_{\mathrm{Strang}}(t + \Delta t) = e^{\frac{1}{2}\Delta tA}e^{\Delta tB}e^{\frac{1}{2}\Delta tA}e^{\Delta tB}u(t)$$

Attila Bagoly (ELTE)

Viscous hydrodynamics

 $\partial_{t}Q + \partial_{x}F_{id}(Q) + \partial_{y}G_{id}(Q) + \partial_{x}F_{visc}(Q,\partial Q) + \partial_{y}G_{visc}(Q,\partial Q) = 0$

 \implies operator splitting

■ Ideal step: $\partial_t Q + \partial_x F_{id}(Q) + \partial_y G_{id}(Q) = 0 \rightarrow Q^{id}, \partial Q^{id}$ $\rightarrow F_{visc}, G_{visc}$

■ Viscous step: $\partial_t Q + \partial_x F_{\text{visc}}(Q^{\text{id}}, \partial Q^{\text{id}}) + \partial_y G_{\text{visc}}(Q^{\text{id}}, \partial Q^{\text{id}}) = 0$ $\rightarrow Q$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □