Higgs Boson Searches and the Hbb Coupling at the LHeC

Tao Han and Bruce Mellado University of Wisconsin-Madison

Especial thanks to F. Maltoni/Madgrah team and D.Zeppenfeld Workshop on the LHeC Divonne, 01-03/09/09

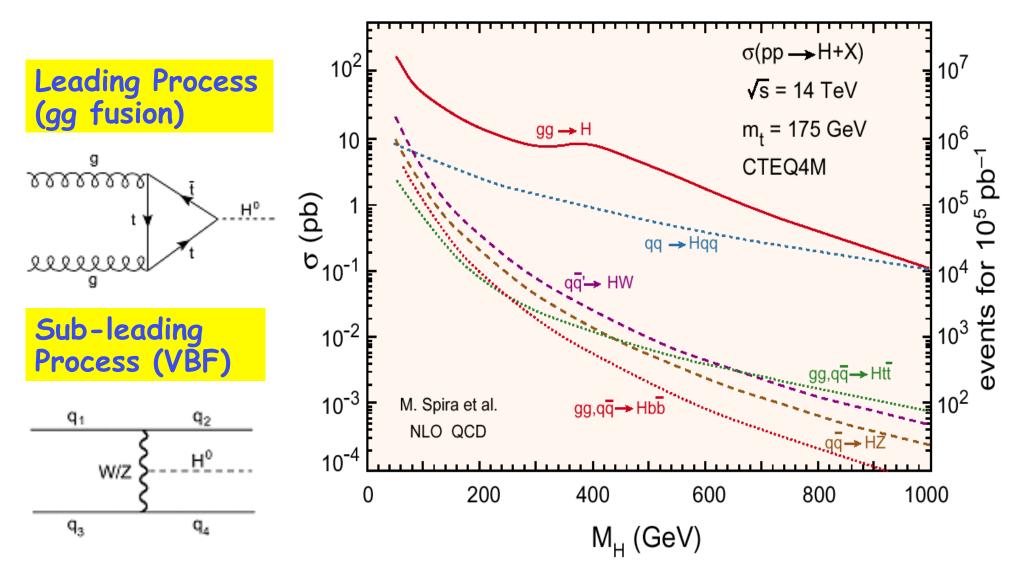
Outline

- **Hbb** at the LHC
- **Higgs searches using VBF Higgs at the LHC**

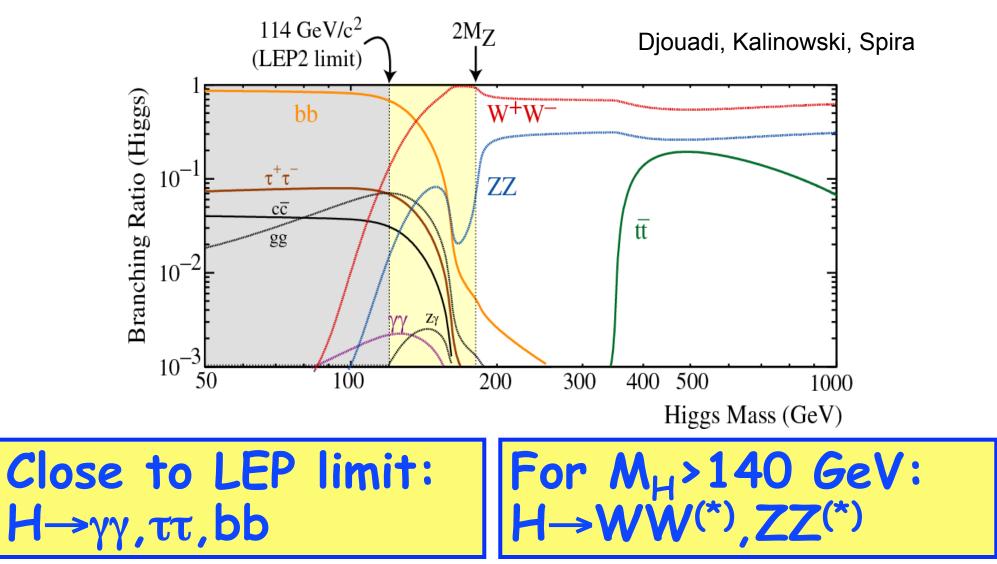
□ Higgs production at the LHeC

- **Cross-sections**
- **Quark Kinematics**
- **Charge Current Signal**
 - Event selection
 - Kinematics and results
- **Neutral Current Signal**

Outlook and Conclusions

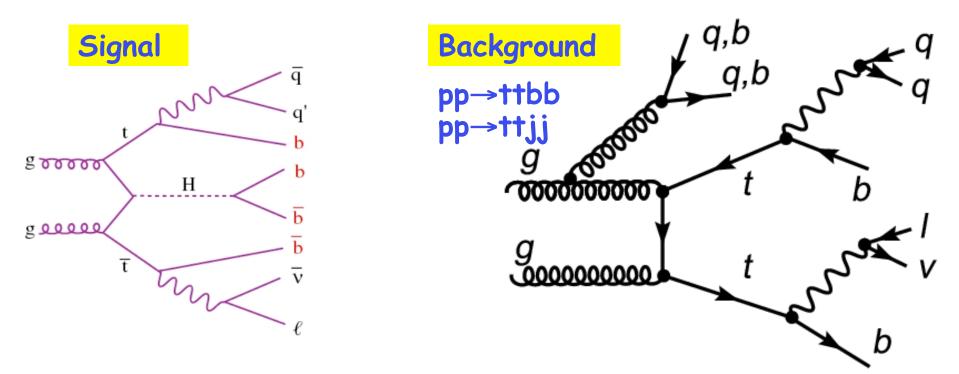

Introduction

- □ Extensive feasibility studies indicate observation of the SM Higgs boson at the LHC possible with 1-20 fb⁻¹ of integrated luminosity in entire range (M_H=115 GeV-1 TeV)
- Once the Higgs observed emphasis will shift to measuring cross-sections & couplings
- □ The gg→H production indirect test of Htt coupling and HTT coupling reachable.
- Measurement of Hbb coupling crucial aspect, but challenging at the LHC

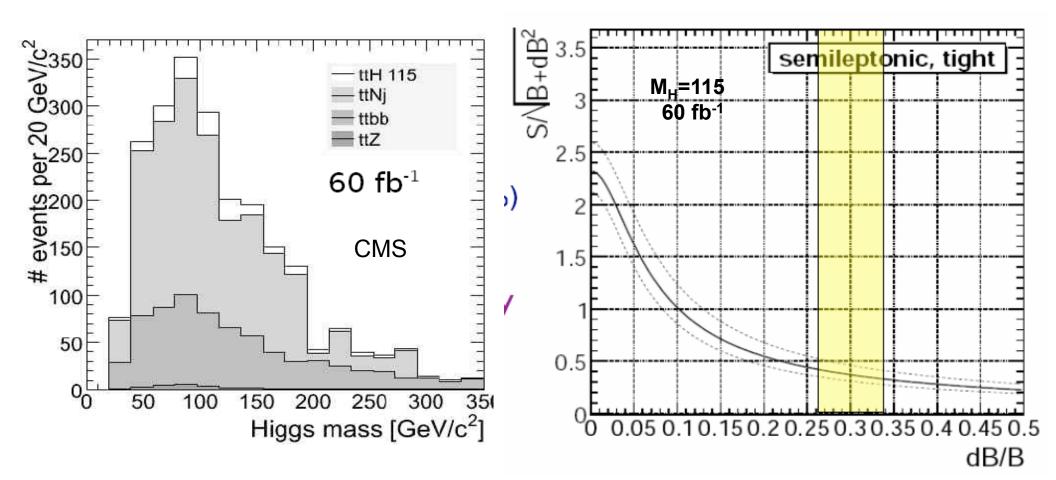

 \Box ttH(\rightarrow bb) and WH(\rightarrow bb) investigated

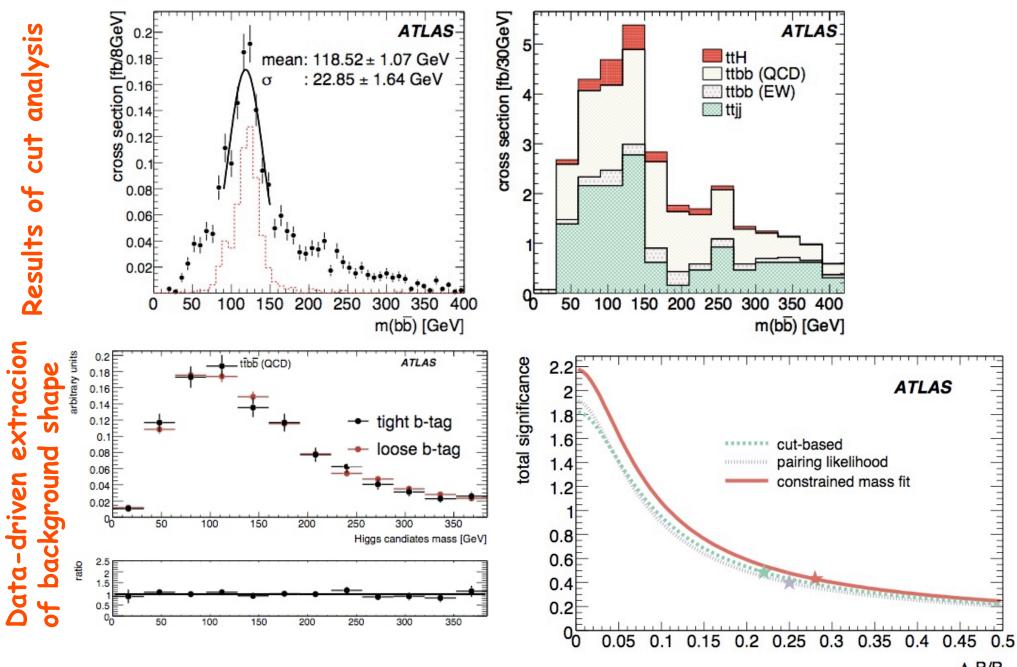
- Following U. Klein and M. Ishitsuka, we investigate the Higgs production at the LHeC
 - **Use forward jet tagging to secure feasibility**
 - Similar analysis reported in proceedings of Aachen Workshop 1990 by G.Grindhammer et al

Higgs Production at LHC



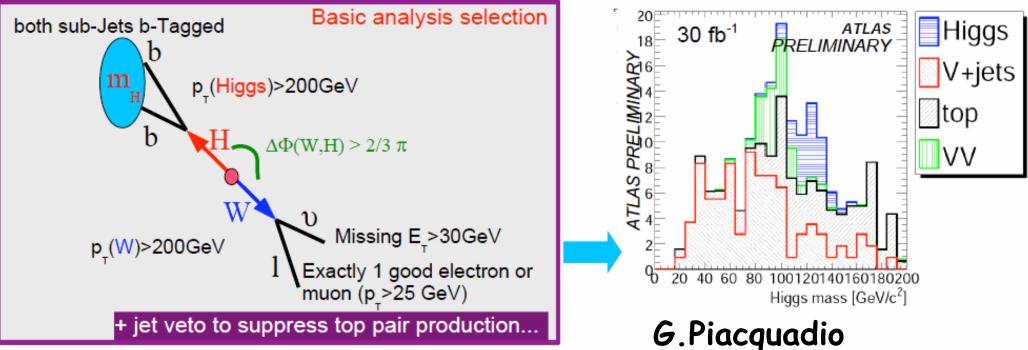
Main Decay Modes


$H \rightarrow bb$ at LHC


Complex final state: ttH(→bb)→lepton+v+bbbb+jj

Analysis very sensitive to b-tagging efficiency (ε_b⁴)
 Parton/Hadron level studies → ε_b ≥60% needed
 Need ~100 times rejection against light jets and ~10 times against charm to suppress ttjj

ttH, H→bb (CMS)



 $[\]Delta B/B$

New idea for the LHC WH(\rightarrow bb) at High P_T

□ Proposed in [J. Butterworth et al, PRL 100:242001,2008] (together with ZH \rightarrow [IIbb,vvbb])

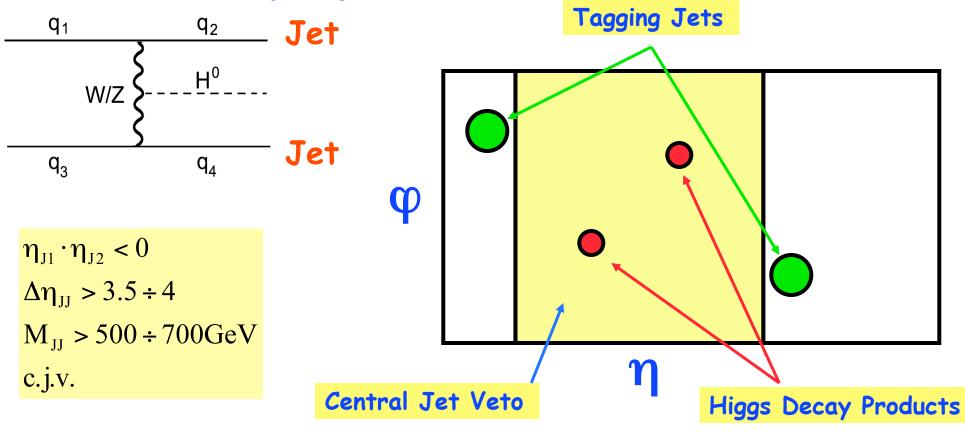
Require both W and bb to have large P_T. The bb pair is very collimated. Use Cambridge-Aachen jet algorithm. Candidates with with a clear splitting into two subjets are kept. 10% mass resolution

Higgs via VBF Qualitative remarks

$$\begin{split} \sigma(fa \to f'X) &\approx \int dx dp_T^2 P_{V/f}(x, p_T^2) \sigma(Va \to X) \\ P_{V/f}^T(x, p_T^2) &= \frac{g_V^2 + g_V^2}{8\pi^2} \frac{1 + (1 - x)^2}{x} \frac{p_T^2}{(p_T^2 + (1 - x)M_V^2)^2} \\ P_{V/f}^L(x, p_T^2) &= \frac{g_V^2 + g_V^2}{4\pi^2} \frac{1 - x}{x} \frac{(1 - x)M_V^2}{(p_T^2 + (1 - x)M_V^2)^2}. \end{split}$$

$$\begin{array}{c|c} q_1 & q_2 \\ \hline & \\ W/Z \end{array} \\ \hline q_3 & q_4 \end{array}$$

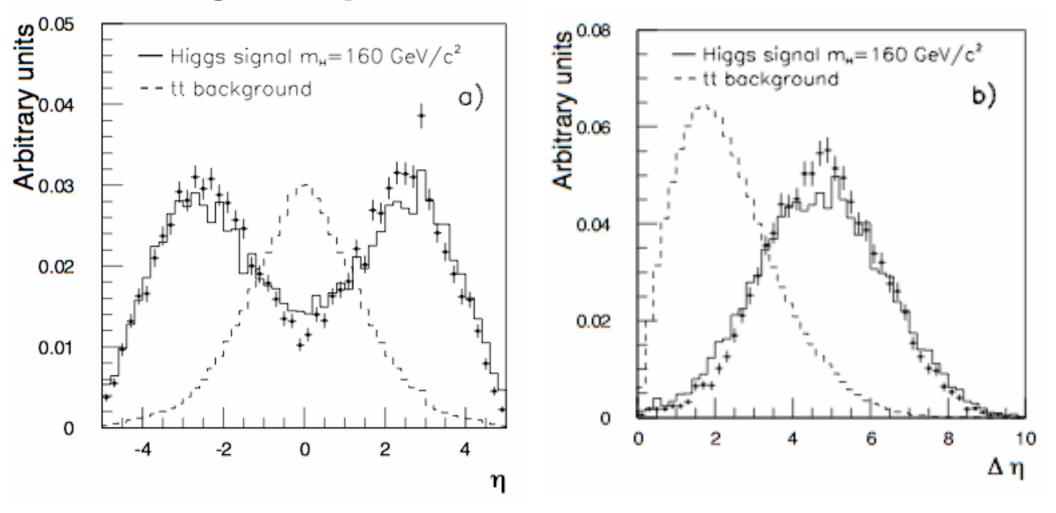
□ Unlike QCD partons that scale like 1/P_T², here P_T~sqrt(1-x)M_w

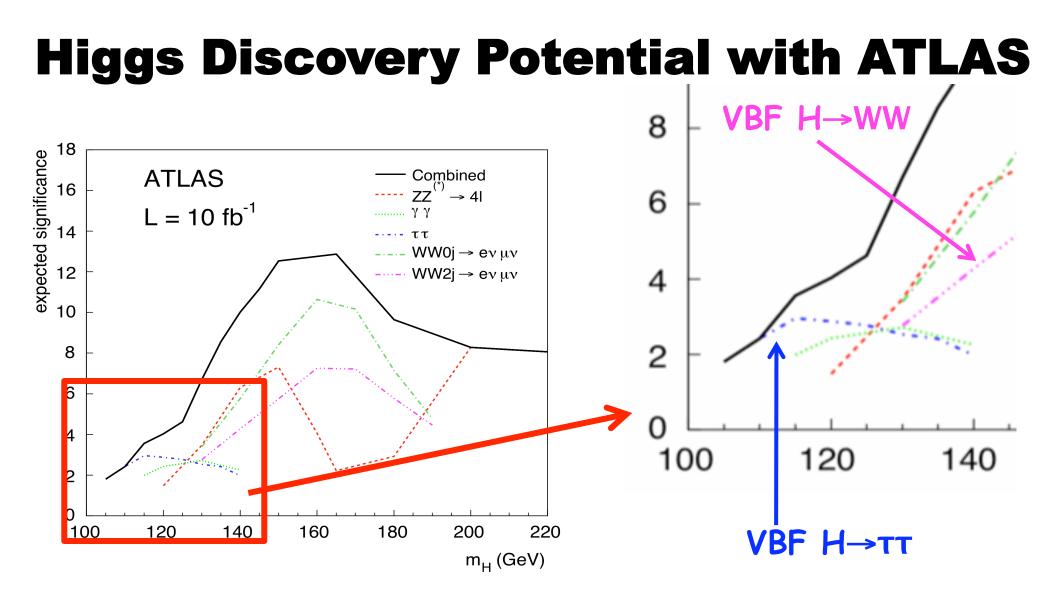

□ Due to the 1/x behavior of the Weak boson the outgoing parton energy (1-x)E is large → forward jets □ At high P_T $P_{V/f}^T \sim 1/p_T^2$ and $P_{V/f}^L \sim 1/p_T^4$.

Contribution from longitudinally polarized Weak bosons is suppressed (Higgs couples to longitudinally polarized WB)

SM Higgs + 2jets at the LHC

Wisconsin Pheno (D.Zeppenfeld, D.Rainwater, et al.) proposed to search for a Low Mass Higgs in association with two jets with jet veto


Central jet veto initially suggested in V.Barger, K.Cheung and T.Han in PRD 42 3052 (1990)

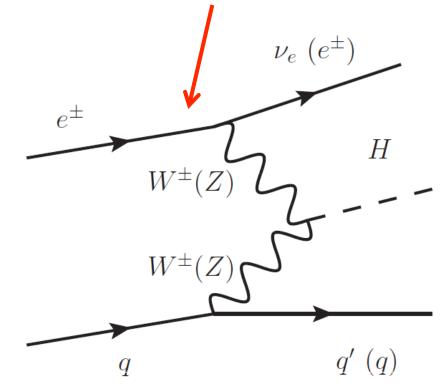


Jets in VBF Higgs

□ ATLAS reported results with studies on forward tagging in full simulation in Eur. Phys J. C 32 (2004) s19

Histrograms – parton level. Dots - reconstruction

 VBF plays very important role in Higgs discovery
 CMS and ATLAS prepared for meet the challenges of tagging forward jets

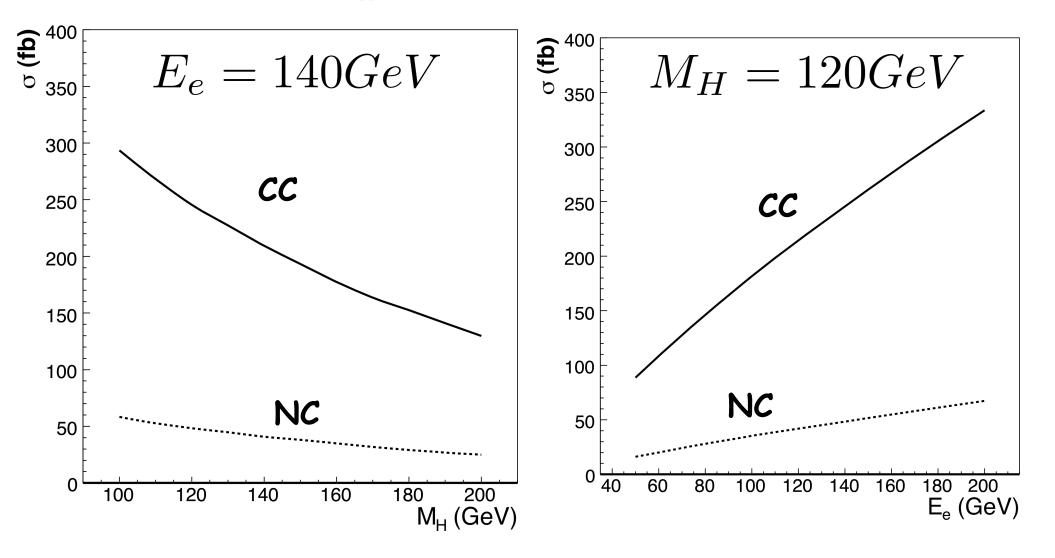

Higgs at LHeC

At LHC replace Lepton line by quark line

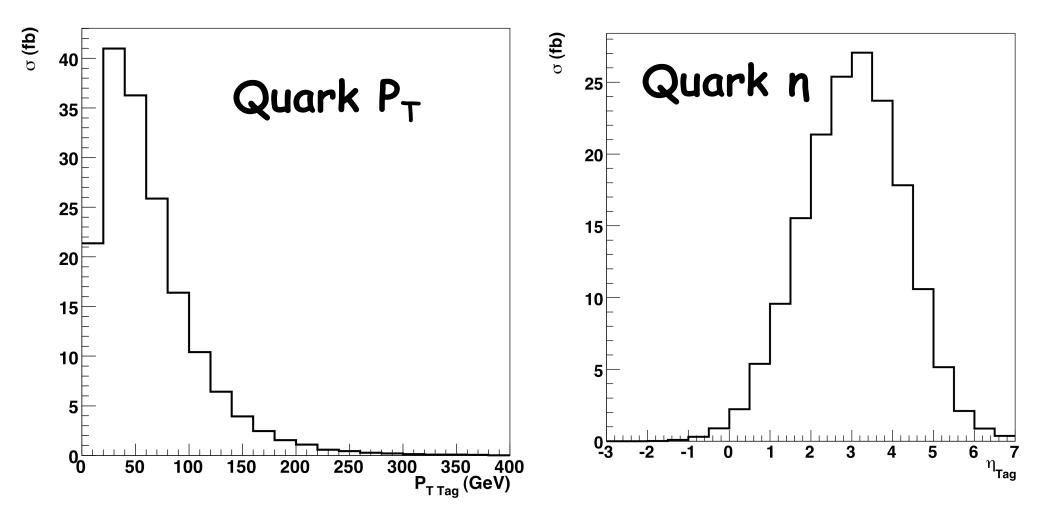
□ It is remarkable that VBF diagrams were calculated for lepton nucleon collusions before for pp!

T.Han was involved in first calculations and a lot of the phenomenology for pp

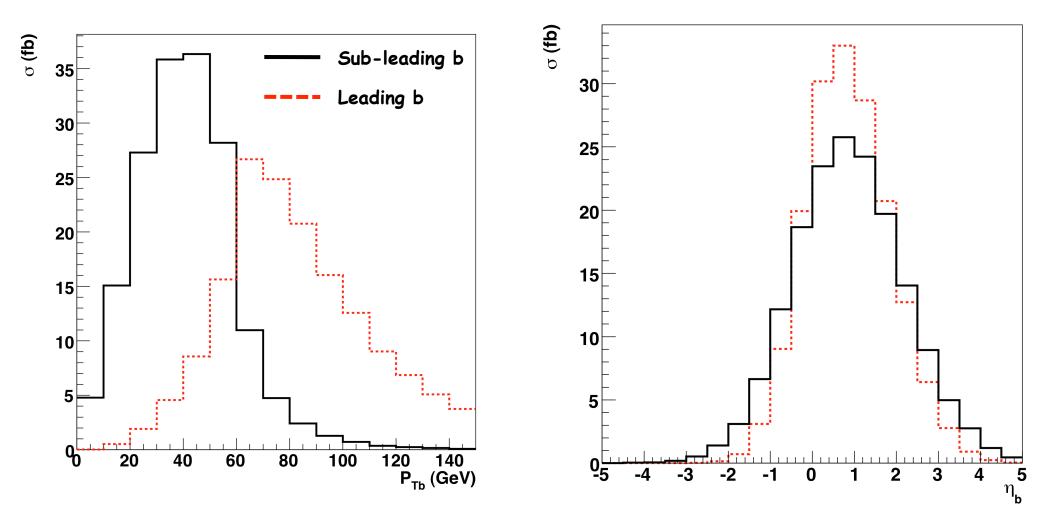
Consider feasibility for the following point:



 $E_p = 7$ TeV, $E_e = 140$ GeV, $M_H = 120$ GeV


Cross-Sections

□ Used Madgraph and CTEQ6L for e⁻p scattering


Set scales to M_H. Little scale dependence

Forward Jet Kinematics

B-quark Kinematics

Charge Current Analysis

□ The background processes considered are

Cuts

Generator level

$$e^{-}p \rightarrow \nu_{e} qq' j + X \qquad \begin{array}{c} tb \\ b\overline{b} \\ jjj \\ b\overline{b}j \\ t\overline{t} \end{array}$$

 $\Box \text{Magraph, CTEQ6L, } P_{Tj} > 15 GeV; \ \Delta R_{bb,bj} > 0.4$ (fb)

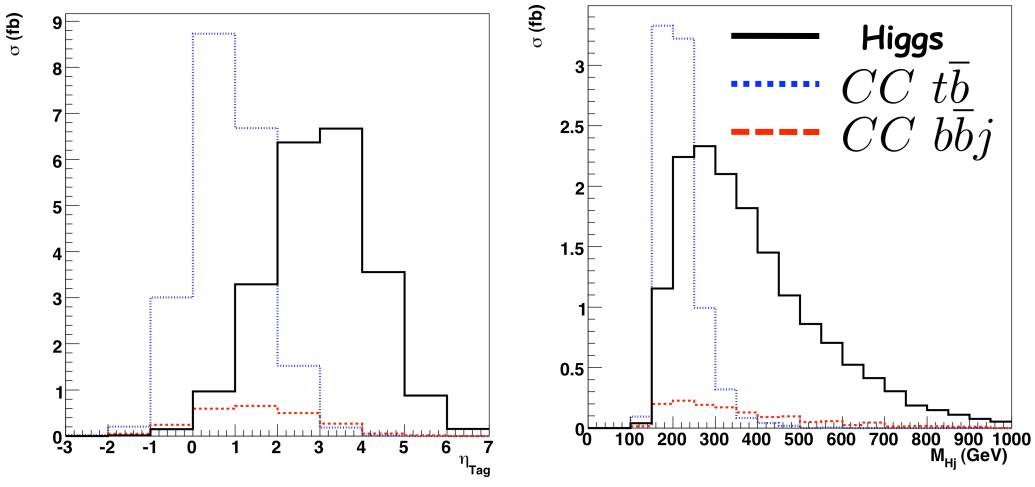
CC			Photo-		
$t\overline{b}$	$b\overline{b}j$	jjj	$b\overline{b}j$	$t\overline{t}$	_
3800	810	26000	48000	250	18

Charge Current Analysis (Event Selection)

a $P_{Tb} > 30 \,\text{GeV}, |\eta_b| < 2.5, \,\text{MET} > 25 \,\text{GeV},$ $\Delta \phi_{jMETmin} > 0.2, \,\text{Lepton veto}$

- $\mathbf{b} ||M_{bb} M_H| < 10 \,\mathrm{GeV}$
- **c** $P_{Tj} > 30 \,\text{GeV}$ in $1 < \eta < 5$

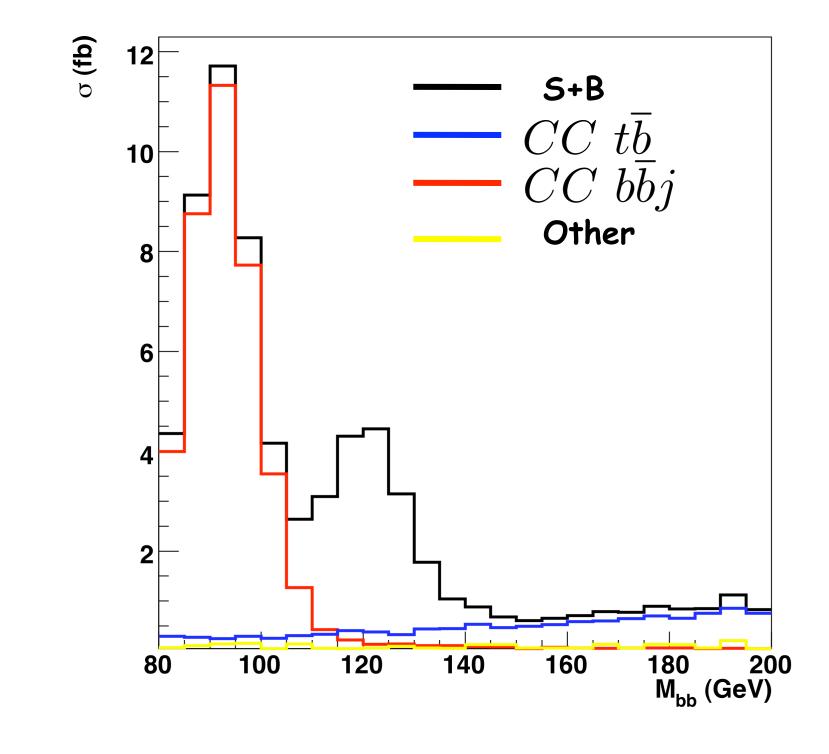
d $M_{HJ} > 250 \,\text{GeV}$ □Parton level analysis with smearing of parton energy according to $\frac{\sigma_E}{E} = \frac{\alpha}{\sqrt{E}} \oplus \beta, \ \alpha = 0.6, \ \beta = 0.03$


Assume 60% b-tagging efficiency in $|\eta|$ **<2.5**

Rejections: R_j =100 and R_c =10

Charge Current Analysis (cont)

After cuts a-b


Charge Current Analysis (results)

(fb)	CC			Photo-prod.		Π	
Cuts	Higgs	$t\overline{b}$	$b\overline{b}j$	jjj	$b\overline{b}j$	$t\overline{t}$	S/B
Generator level	167	3800	810	26000	48000	250	-
a	27.95	152.70	86.25	3.77	6.92	2.29	0.11
b	22.33	20.35	2.37	0.36	0.67	0.27	0.93
С	15.64	8.10	1.36	0.12	0.25	0.14	1.57
d	12.37	1.46	0.92	0.06	0.14	0.04	4.73

Photo-production bbj production from resolved photons not included in this study

Note increase of S/B as forward parton tagging and $M_{\rm HJ}$ cuts are applied

The application of a veto on additional jets with P_{TJ} >30 GeV and $|\eta|<5$ reduces top backgrounds by ~40% with a 7% loss of signal efficiency 21

Charge Current Analysis (results)

Effect of Jet Energy Resolution

				$\mathbf{C}\mathbf{C}$			-prod.]	
Cu	uts	Higgs	$t\overline{b}$	$b\overline{b}j$	jjj	$b\overline{b}j$	$t\overline{t}$	S/B	ß
Generat	Generator level		3800	810	26000	48000	250	-	
	a	27.95	152.70	86.25	3.77	6.92	2.29	0.11	Ξ
1	b	22.33	20.35	2.37	0.36	0.67	0.27	0.93	° Z
	c	15.64	8.10	1.36	0.12	0.25	0.14	1.57	
(d	12.37	1.46	0.92	0.06	0.14	0.04	4.73	
$\frac{\sigma_E}{E} = \frac{\alpha}{\sqrt{E}} \oplus$			$\beta \beta, \alpha$			$\beta =$			
Cuts	Higgs	$t\overline{b}$			ijj	bb j	$t\bar{t}$	S/B	Π
									H
a	27.87	153.3				33.96	2.28	0.10	
b	18.55	20.04	4 3.5	51 0	.36	4.70	0.27	0.64	
c	13.03	7.93	2.2	24 0	.12	1.91	0.14	1.06	
d	10.27	1.57	1.6	64 0	.06	1.31	0.03	2.23	

Effect of Range of b-tagging

		$\overline{\mathrm{CC}}$			Photo-		
Cuts	Higgs	$t\overline{b}$	$b\overline{b}j$	jjj	$b\overline{b}j$	$t\overline{t}$	S/B
Generator level	167	3800	810	26000	48000	250	-
a	27.95	152.70	86.25	3.77	6.92	2.29	0.11
b	22.33	20.35	2.37	0.36	0.67	0.27	0.93
С	15.64	8.10	1.36	0.12	0.25	0.14	1.57
d	12.37	1.46	0.92	0.06	0.14	0.04	4.73

Nomina

$ \eta_b < 2.5 \rightarrow$	$ \eta_b $ -	< 3
------------------------------	--------------	-----

			CC		Photo	-prod.	Π		
Cuts	Higgs	$t\overline{b}$	bb j	jjj	b b j	tī	S/B		
a	30.23	174.51	94.51	4.15	7.03	2.74	0.11		
b	24.41	22.74	2.68	0.39	0.67	0.32	0.91		
c	17.08	9.51	1.57	0.13	0.25	0.18	1.47		
d	13.15	1.65	1.01	0.05	0.14	0.04	4.55		

Effect of Jet P_T

		$\mathbf{C}\mathbf{C}$			Photo-]	
Cuts	Higgs	$t\overline{b}$	$b\overline{b}j$	jjj	$b\overline{b}j$	$t\overline{t}$	S/B
Generator level	167	3800	810	26000	48000	250	-
a	27.95	152.70	86.25	3.77	6.92	2.29	0.11
b	22.33	20.35	2.37	0.36	0.67	0.27	0.93
С	15.64	8.10	1.36	0.12	0.25	0.14	1.57
d	12.37	1.46	0.92	0.06	0.14	0.04	4.73

Nomina

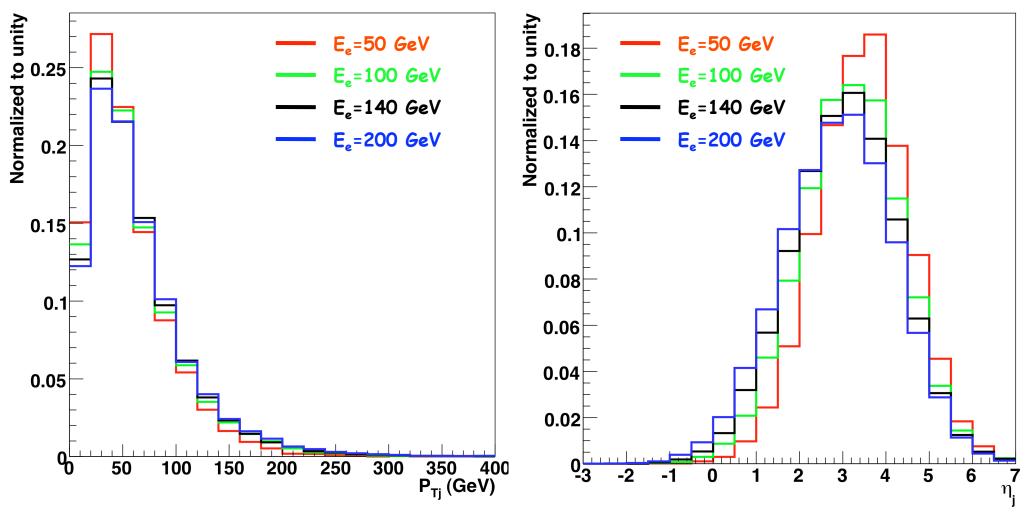
 $P_{Tj,b} > 30 \, GeV \rightarrow P_{Tj,b} > 20 \, GeV$

			CC		Photo	-prod.]
Cuts	Higgs	tb	b₽ j	jjj	bīb j	tī	
a	33.48	208.46	134.97	5.85	8.12	2.62	0.09
b	26.52	24.90	2.91	0.47	0.88	0.30	0.90
c	21.47	10.16	1.79	0.26	0.42	0.16	1.68
d	16.24	1.71	1.18	0.10	0.32	0.04	4.84

Signal Efficiency for Different E_e

□ First row: Cumulative efficiency

□ Second row: Efficiency w.r.t. previous cut


Cut	$E_e = 50$	$E_e = 100$	$E_e = 140$	$E_e = 200$
a	0.129	0.157	0.166	0.171
	-	_	_	-
b	0.109	0.127	0.132	0.136
	0.84	0.81	0.80	0.80
С	0.076	0.090	0.093	0.095
	0.70	0.71	0.70	0.70
d	0.050	0.067	0.073	0.078
	0.66	0.75	0.79	0.82

Energy Dependence of b-quark Kinematics

Leading b-quark Sub-Leading b-quark Normalized to unity 0.20 0.2 0.18 0.16 Normalized to unity 0.14 0.12 E_=50 GeV E_=50 GeV E_=100 GeV E_=100 *G*eV $E_e = 140 GeV$ E_=140 GeV E_=200 GeV E_e=200 GeV 0.14 0.1 0.12 0.08 0.1 0.06 0.08 0.06 0.04 0.04 0.02 0.02 -2 0<u></u> 3 5 -2 -3 2 -4 -1 3 0 4 5 η b2 η_{b1}

 P_{T} of b-quarks displays little dependence on E_{e}

Energy Dependence of Forward parton Kinematics

Neutral Current Analysis

□ The search for a Higgs boson in NC events is very interesting since it displays a very clean signature due to the presence of a high P_T electron.

Backgrounds considered:

$$e^-p \to e^-b\overline{b}j + X$$
 and $e^-p \to e^-W^{\pm}b\overline{b}j$

Applied cuts at the generator level:

 $P_{Tj,b,e} > 30 \, GeV, \ |\eta_{j,e}| < 5, \ |\eta_b| < 2.5, \Delta R_{bb,bj} > 0.4$ $|M_{b\overline{b}} - M_H| < 10 \, GeV$

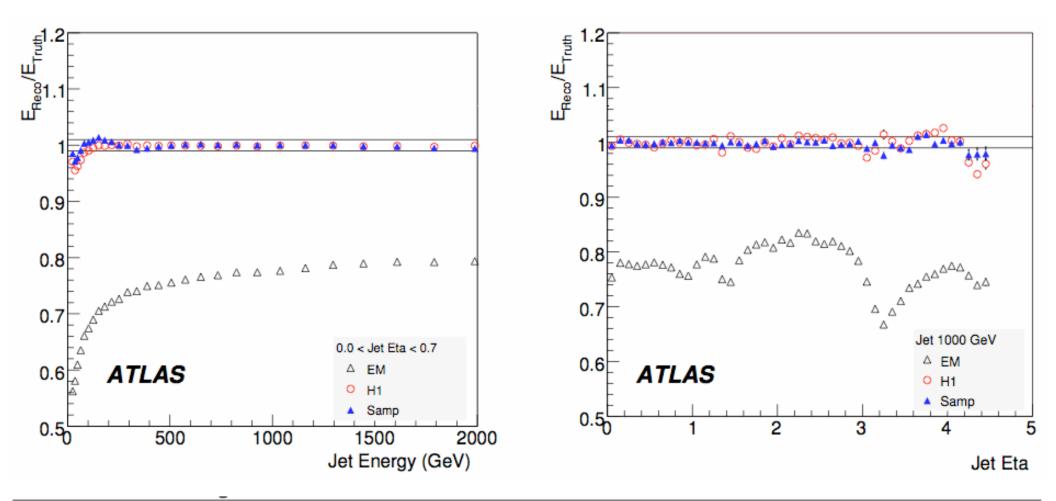
□Signal and background cross-section of 5.7fb and 23.7fb \rightarrow S/B~0.25

Second background process is negligible

Outlook and Conclusions

- □ The Higgs can be discovered at the LHC. However, measurement of Hbb coupling challenging
- □Use of forward jet tagging to isolate the Higgs signal at LHeC very important

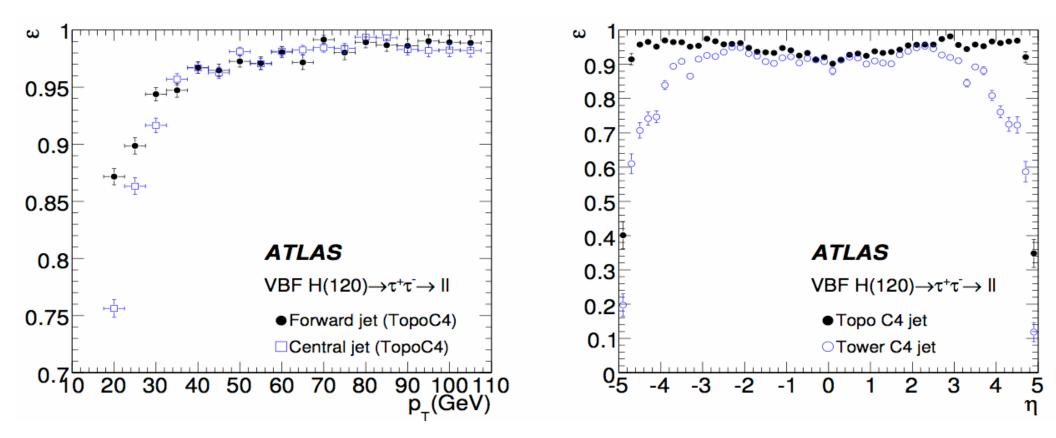
□Forward jet tagging secures feasibility of the Higgs search in CC and NC events


Excellent hadronic jet resolution and high b-jet tagging efficiency are critical experimental issues

 $\Box Lowering jet P_T thresholds to 20 GeV (parton-level) leads to significant enhancement of signal yield$

Good control of top background required

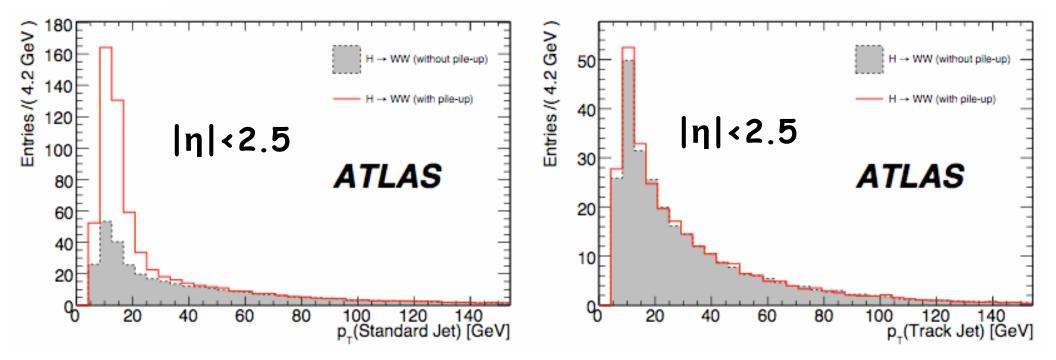
□ The sensitivity can be improved significantly



Reconstruction Algorithm	$0 < \eta < 0.5$.5	$1.5 < \eta < 2.5$		
	a (%)	b (%)	c (GeV)	a (%)	b (%)	c (GeV)
Cone $R_{\rm cone} = 0.7$ Tower	64 ± 4	2.6 ± 0.1	4.9 ± 0.5	103 ± 10	2.6 ± 0.8	8 ± 1
$k_{\rm T}R = 0.6$ Tower	68 ± 5	2.5 ± 0.2	6.3 ± 0.5	110 ± 1	1 ± 1	12.2 ± 2.5
Cone $R_{\rm cone} = 0.7$ Topo	63 ± 4	2.7 ± 0.1	4.2 ± 0.5	107 ± 8	1 ± 1	6.5 ± 1.5
$k_{\rm T}R = 0.6$ Topo	64 ± 5	2.7 ± 0.2	5.4 ± 0.5	112 ± 4	1 ± 1	10.0 ± 1.5

Jets in VBF Higgs

ATLAS chose to use narrow jets for the VBF analyses. Prefer jets based on topological clusters, as opposed to tower based


The latter statement may be reviewed in the future

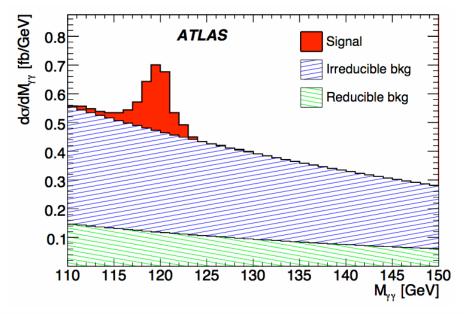
Track-jet for CJ Veto

□ Clusterize with a cone algorithm only good quality tracks that point to the Higgs vertex

	H	$\rightarrow WW$	tī		
	no pile-up with pile-up		no pile-up	with pile-up	
std jets ($ \eta < 2.5$)	72.0 ± 1.0	63.0 ± 1.2	28.6 ± 3.4	19.7 ± 3.3	
track jets	72.0 ± 1.0	73.5 ± 1.1	28.6 ± 3.4	25.9 ± 3.6	
std jets ($ \eta < 3.2$)	65.4 ± 1.0	57.0 ± 1.2	24.0 ± 3.2	16.3 ± 3.0	
combination	65.8 ± 1.0	65.9 ± 1.1	24.0 ± 3.2	23.1 ± 3.5	

VBF Higgs Efficiency

□ ATLAS reported the VBF H efficieny within the context fo the $H \rightarrow \gamma \gamma$ analysis

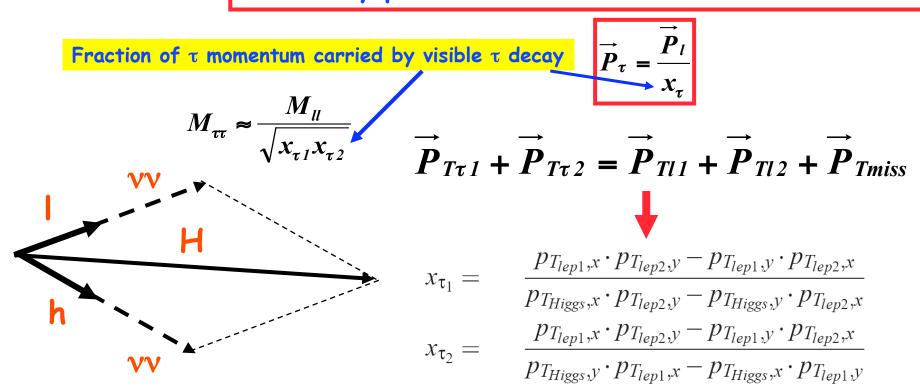

- **1.** Two quarks with p_T >40GeV and p_T >20GeV (| η |<5)and in opposite hemispheres
- 2. Two reconstructed jets with p_T >40 GeV and p_T >20 GeV (| η |<5)
- **3. Two reconstructed jets are in opposite hemispheres**
- 4. Jet-parton matching (Delta R<0.4)

Selection	HERWIG (no pileup)	HERWIG (Pileup 10 ³³)	PYTHIA (no pileup)
step 1 (quark level)	0.618 ± 0.002	0.613 ± 0.003	0.632 ± 0.002
step 2 (rec level)	0.914 ± 0.002	0.911 ± 0.002	0.943 ± 0.001
step 3 (rec level)	0.801 ± 0.002	0.774 ± 0.003	0.771 ± 0.002
step 4 (matching)	0.757 ± 0.003	0.726 ± 0.003	0.713 ± 0.003

H-> \gamma \gamma + 2 jet in ATLAS

Sensitivity of individual channels eveluated with simple event counting and a fit-based procedure

Include look-else-where effects by leaving mass float

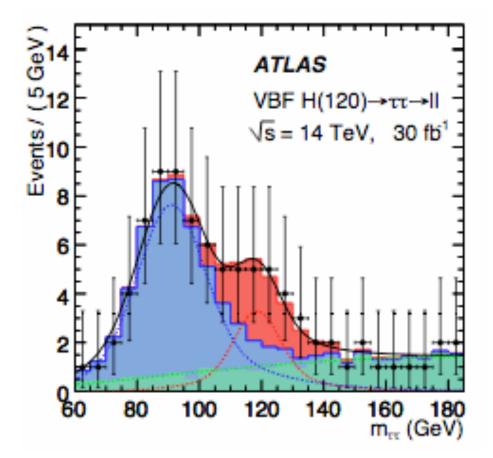


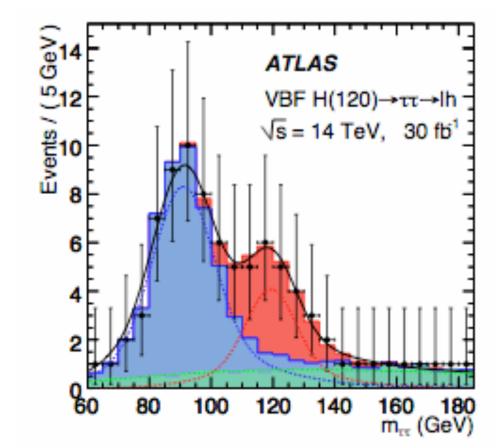
	Inclusive (with K-factors)			H + 1 jet (no K-factors)			H + 2jet (no K-factors)			Combined
m_H	$\sigma(S,B)$	σ_{1D}^{Fix}	σ_{1D}^{Float}	$\sigma(S,B)$	σ_{1D}^{Fix}	σ_{1D}^{Float}	$\sigma(S,B)$	σ_{1D}^{Fix}	σ_{1D}^{Float}	$\sigma(S,B)$
120	2.6	2.4	1.5	1.8	1.8	1.3	1.9	2.0	1.1	3.3
130	2.8	2.7	1.8	2.0	2.1	1.6	2.1	2.1	1.2	3.5
140	2.5	2.2	1.3	1.8	1.7	1.2	1.7	2.0	1.0	3.0

Results shown for M_{H}=120 GeV and 10 fb⁻¹

H→ττ Mass Reconstruction

In order to reconstruct the Z mass need to use the collinear approximation
Tau decay products are collinear to tau direction

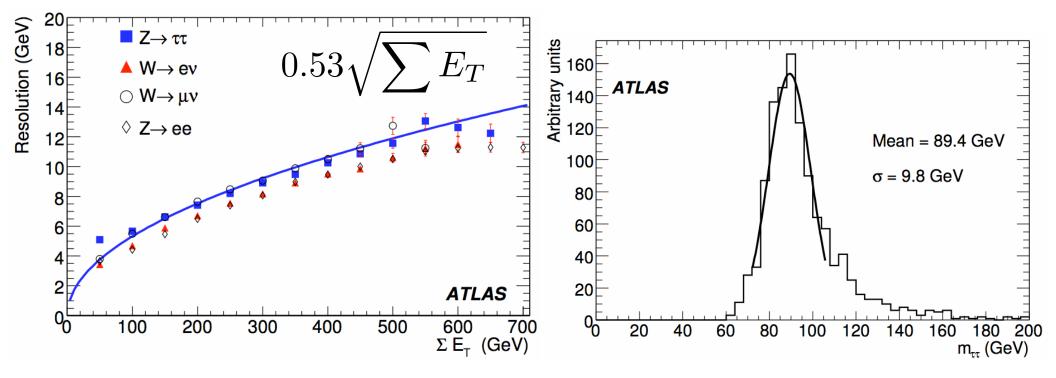



 $A = x_{\tau 1}$ and $x_{\tau 2}$ can be calculated if the missing E_T is known A = G food missing E_T reconstruction is essential

Low Mass SM H→ττ+jets

Reconstruct Higgs mass with collinear approxim

H(→ττ→ll) +≥2jets

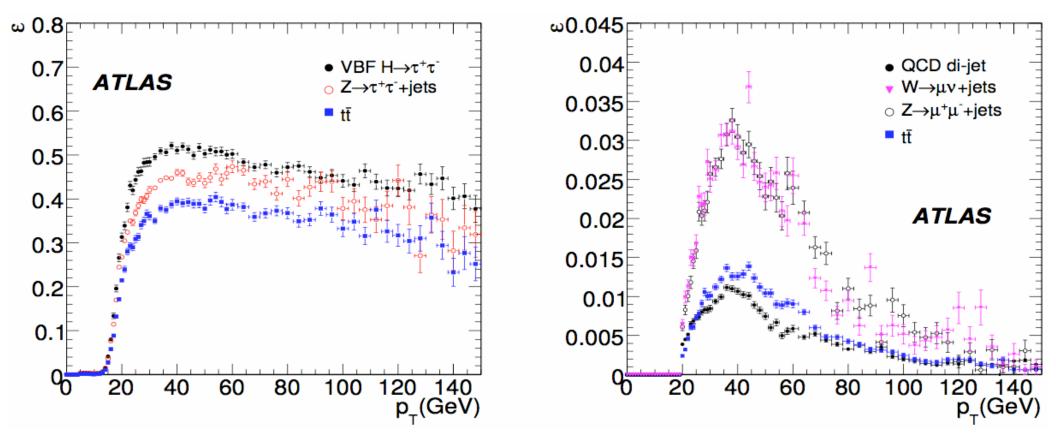

H(→ττ→lh) +≥2jet

 $\nu\nu$

MET Reconstruction

□ To achieve good MET resolution is crucial in this channel. Requires good understanding of high P_T and low P_T hadronic objects

Expect to achieve ~10% resolution in di-tau mass in order to distinguish Higgs signal from Z+jets



Tau-ID

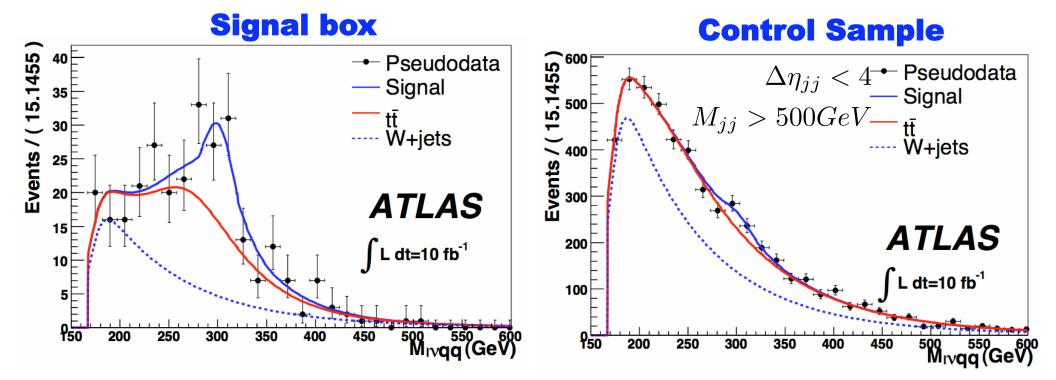
In the "Physics book" a calorimeter seeded reconstruction algorithm was used.

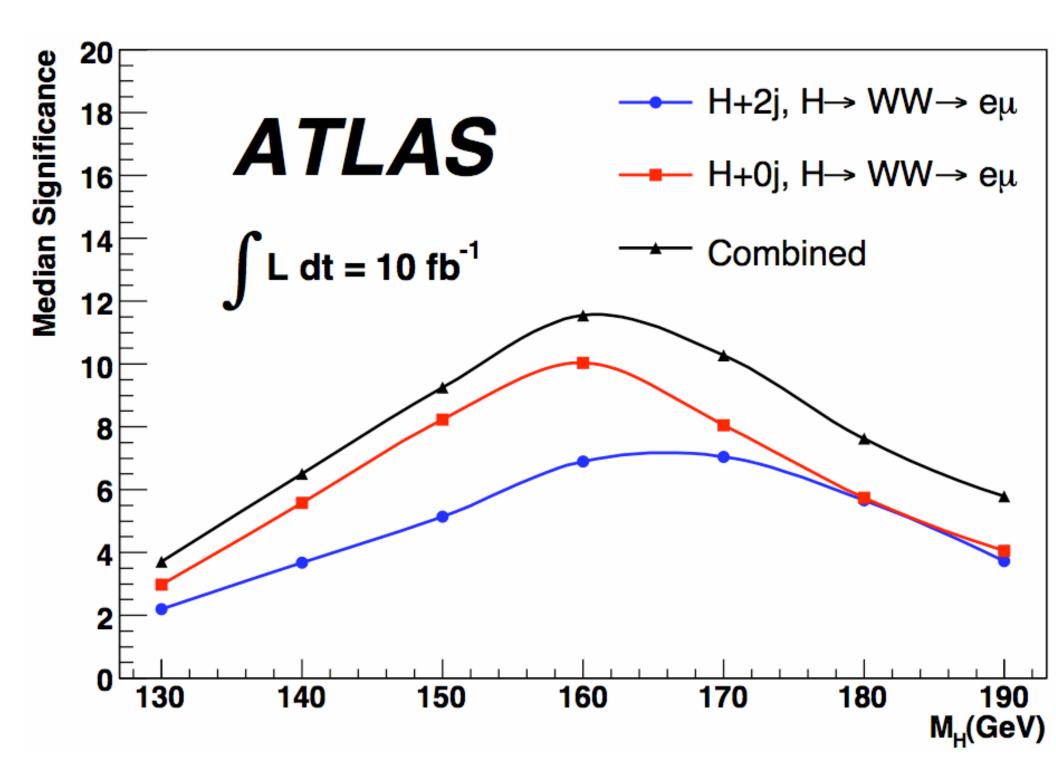
Hadronic tau identification **Tau ID**: Calorimeter-seeded $p_T \ge 30 \text{ GeV}$ Track multiplicity : 1 or 3 tracks |charge| = 1 $Log Likelihood Ratio \ge 4$ **Electron Veto**:

minimum TRT $HT/LT \le 0.2$ if $|\eta_{\tau}| \le 1.7$ and $LT \ge 10$ $E_T^{HAD}/p_T \ge 0.002$ in matched electron object

Low Mass SM H→ττ+2jets

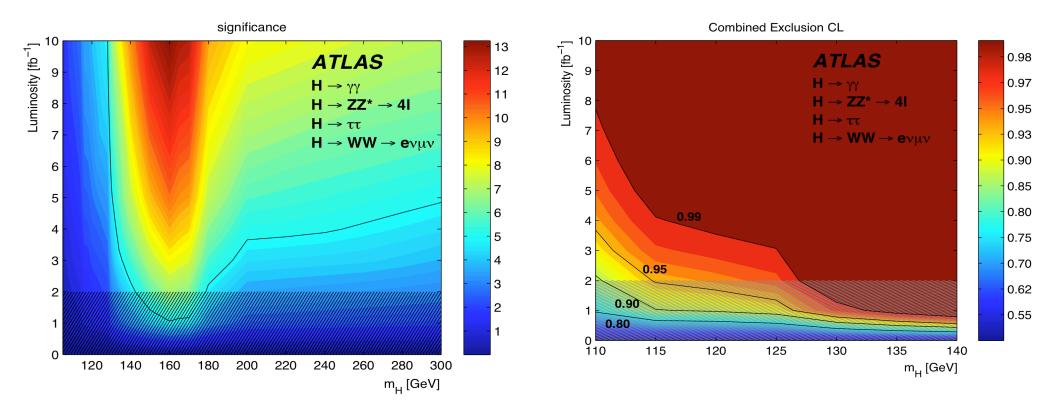
Signal significance computation based on a fit to the di-tau mass spectrum . In order to constrain the background rate and shape, we simultaneously fit the signal candidates and the background control sample

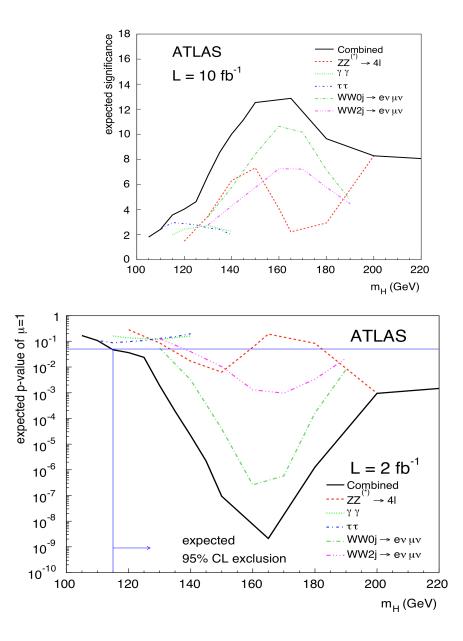

				Expected Significance (σ) 4 5 9 2 8 6 0	$ATLAS$ $\sqrt{s} = 14 \text{ TeV, 30 fb}^{1}$ $II-channel$ $II-channel$
m_H	<i>ll</i> -channel	<i>lh</i> -channel	combined	- S P	combined
105	1.95	2.41	3.10		-
110	2.44	3.35	4.15	ad 5	
115	2.98	4.07	5.04	_ й 4 [
120	2.92	3.87	4.85	3	
125	2.75	3.75	4.65	2	
130	2.46	3.38	4.18	2	
135	2.21	3.32	3.99	1	
140	1.80	2.70	3.24	0 E	105 110 115 120 125 130 135 140 m _H (GeV)

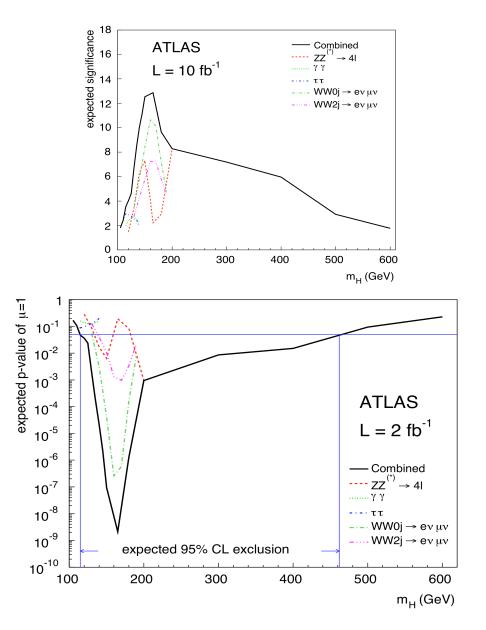

$H \rightarrow WW \rightarrow l \nu qq + 2 jet in ATLAS$

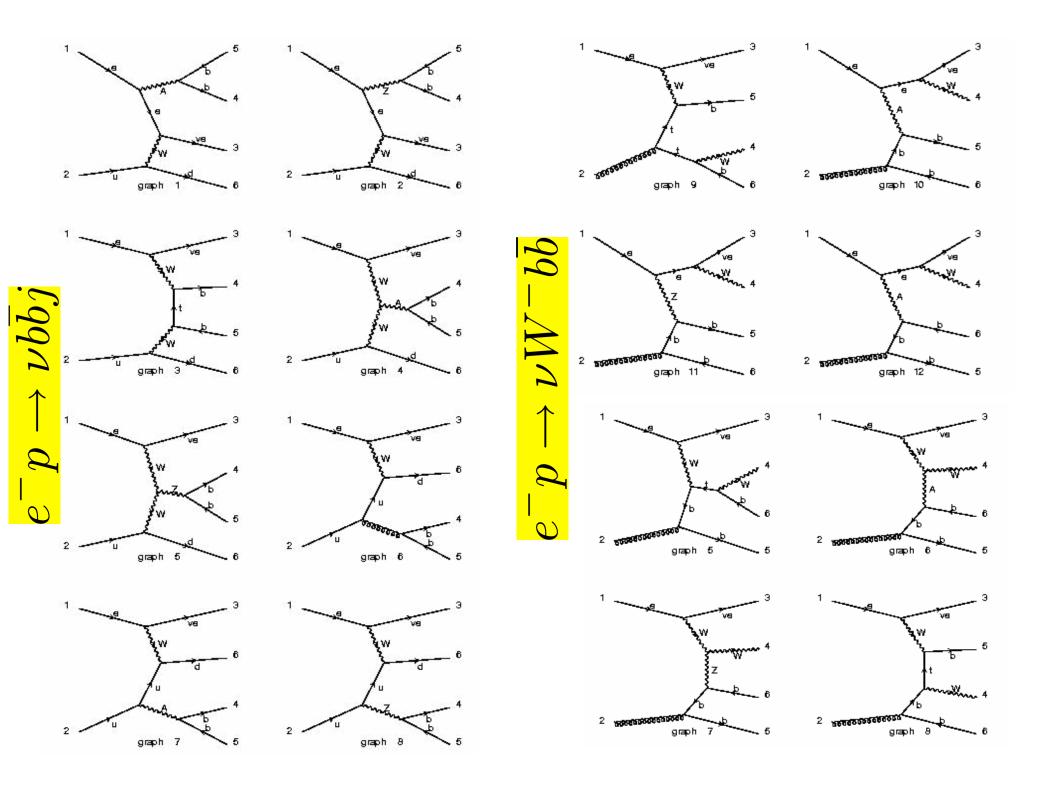
□Very similar approach to the one described for the II amalysis (see extra slides for cuts & x-sections)

Reconstruct mass peak (kinematic fit)


Make simultaneous fit in signal box and control region


Overall Sensitivity to SM Higgs


Results obtained for 14 TeV $H \rightarrow WW^{(*)}, ZZ^{(*)}$ dominate sensitivity for $M_H > 140$ GeV



Preliminary studies seem to indicate that ATLAS has the potential to exclude the SM Higgs with M_H around 160 GeV with 10 TeV center of mass energy and 200 pb⁻¹ of integrated luminosity

ATLAS Sensitivity to SM Higgs

