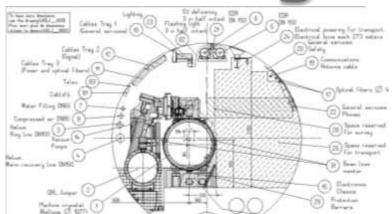
## LHEC Electron Ring Arc Design Emittance and damping partition constrained by the hadron ring and magnet choices

#### John Jowett Davide Tommasini CERN


J.M. Jowett, D. Tommasini, 2nd CERN-ECFA-NuPECC Workshop on the LHeC , Divonne, 2 September 2009



#### **Magnet issues**



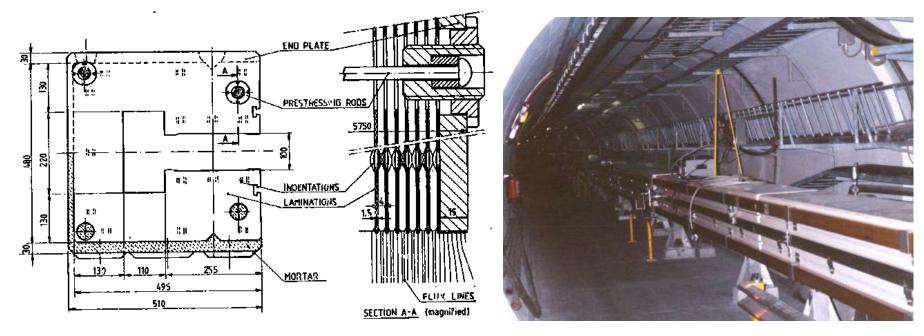
The magnets must be compatible with the present LHC machine.





# Field level

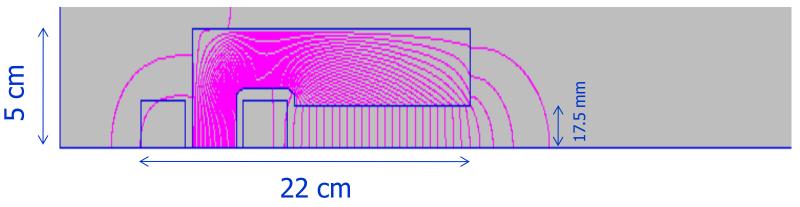
By filling all available arc space with magnets the required dipole field at an injection energy of 5 GeV is only about 60 Gauss !


Magnetic field quality & reproducibility at injection is an issue.



#### Low field bending : LEP

Main bending magnets were made of "steel-concrete" cores


- 5.75 m length, 100 mm vertical aperture
- 6×2 cores per 79 m long regular FODO cell
- Peak magnetic field was very low (1100/215 G at 100/20 GeV).
  - To provide adequate field reproducibility at injection and limit the magnet weight, the magnet cores were manufactured as stacks of 1.5 mm thick low carbon steel laminations, spaced by 4 mm and embedded in a cement mortar.
- Each 5.75 m long core weighed 4.6 tonnes.





#### **Guidelines for magnet work**

- With respect to LEP dipoles we want:
  - smaller, lighter, lower injection field
- Directions to explore :
  - smaller magnet aperture (smaller, lighter)
  - shorter magnets (increase injection field)
  - materials-compounds-composites (ferrites, resin-diluted ferromagnetic powders, plastic of foams fillers ...)
  - iron-less designs, possibly using iron to reclose the flux lines.



Pictured : 1/2 compact C-shaped dipole supplied by a single turn conductor I = 3750 A, B=1350 Gauss, Gap = 35 mm vertical



## Living with weak magnets

#### High injection energy

- Helps with this and many other things, but is expensive.
- Non-reproducible injection conditions ?
  - Study operational ways to do very fast firstturn steering, optics corrections and optimization for intensity on every fill?
  - Merge these into ramp, leading to reproducible conditions at collision energy where field is higher.
  - Unconventional, messy, but not obviously impossible.



#### Arc cell design

#### Normal approach to electron ring design:

- Fill all available arc space with the weakest possible dipoles (gives max energy for given RF power)
- Discussed on basis of analytical thin-lens theory in last year's Divonne workshop
- My proposal then was to use a FODO cell with half the length of the LHC cell, favourable phase advances based on LEP experience, together with some variation of the damping partition numbers.
- We are now pushed, with great reluctance, to consider cells with shorter, stronger magnets.
- No reason to consider other than FODO cells.



## Basis of FODO cell design (1)

- Design emittance taken from our EPAC 2008 paper, to be achieved at top energy.
- Damping partition, Robinson Theorem. Change RF frequency to vary J<sub>x</sub>, extensively used in LEP, HERA.

| 1                              |                                   | -     |                   |
|--------------------------------|-----------------------------------|-------|-------------------|
| Quantity                       | unit                              | e±    | р                 |
| Beam energy                    | GeV                               | 70    | 7000              |
| Total beam current             | mA                                | 74    | 544               |
| Particles/bunch N <sub>b</sub> | 10 <sup>10</sup>                  | 1.40  | 17.0              |
| Horiz. emittance               | nm                                | 7.6   | 0.501             |
| Vert. emittance                | nm                                | 3.8   | 0.501             |
| Horizontal $\beta_x^*$         | cm                                | 12.7  | 180               |
| Vertical $\beta_y^*$           | cm                                | 7.1   | 50                |
| Energy loss per turn           | GeV                               | 0.707 | $6 	imes 10^{-6}$ |
| Radiated power                 | MW                                | 50    | 0.003             |
| Bunch frequency                | MHz                               | 40    |                   |
| CMS Energy $(\sqrt{s})$        | GeV                               | 1400  |                   |
| Luminosity / 1033              | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | 1.1   |                   |

See last year's talk for more details.

Note that thinner quads give more rapid damping partition change.

$$\varepsilon_{x} = \frac{55}{32\sqrt{3}} \frac{\hbar c}{m_{e}c^{2}} E_{e}^{2} \frac{I_{5}}{J_{x}I_{2}}$$

$$J_{x} + J_{y} + J_{\varepsilon} = 4, \qquad J_{\varepsilon} = 2 + 2\frac{I_{8}}{I_{2}} \delta_{e}, \quad J_{y} = 1$$

Synchrotron integrals are well known, except maybe

$$I_8 = \int K_1^2 D_x^2 ds \approx -\frac{81L_{\text{FODO}} -9 + \cos \mu_{\text{FODO}} \csc \left[\frac{\mu_{\text{FODO}}}{2}\right]^2}{200L_Q} I_2$$

## Match to proton beam size at IP at lower electron energy by detuning IR.

J.M. Jowett, D. Tommasini, 2nd CERN-ECFA-NuPECC Workshop on the LHeC , Divonne, 2 September 2009

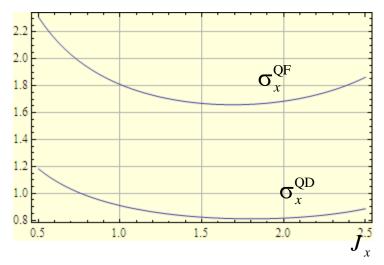


## Basis of FODO cell design (2)

Assume we can adjust betatron coupling to get vertical emittance, taking account of sum rule for quantum excitation

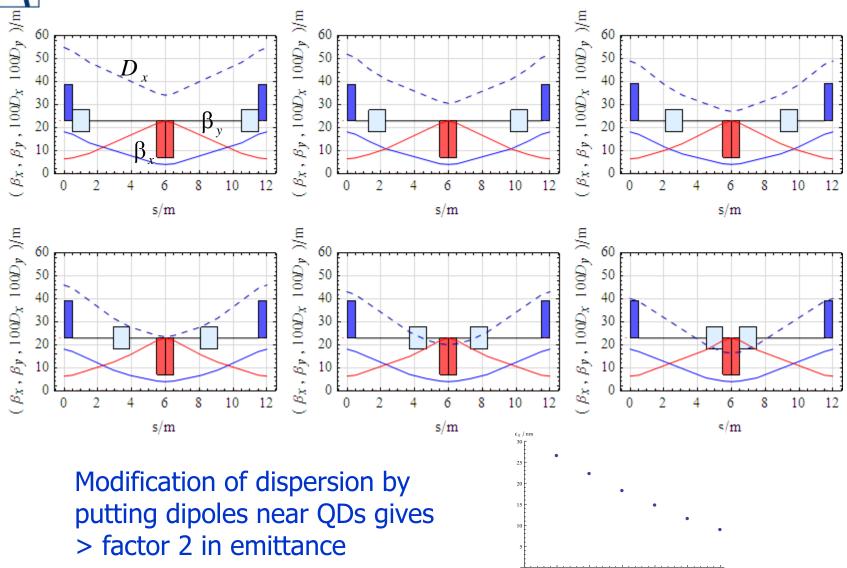
$$J_{x}\varepsilon_{xc} + J_{y}\varepsilon_{yc} = J_{x}\varepsilon_{x}$$

- Build parametrised thick-lens model of FODO cell with
  - Given bend angle per cell
  - Thick quadrupoles
  - Dipoles that only fill a fraction of available space, even after allowance for sextupoles, BPMs, pumps, etc.
  - Centres of dipoles can slide around in available space
  - Independent horizontal and vertical betatron phase
  - Compute many beam parameters, some linked to hadron beam
- Not treated at this level (just for lack of time)
  - Matching to IRs, bypasses, other straight sections
  - Sextupoles, chromaticity, non-linear behaviour but draw on LEP experience of many phase advances.
  - RF, longitudinal phase space




#### Basis of FODO cell design (3)

To minimise horizontal aperture requirement, choose


 $J_x \approx 1.5$ 

Plot of horizontal beam size in QF and QD (in mm) in a LEP-like cell





#### Sliding dipoles around the cell



2



#### **Revolution periods of LHeC beams**

Revolution periods depend on fractional magnetic rigidity (momentum) deviations of each beam:

Electrons: 
$$T_e(\delta_e) = \frac{C_e}{c}(1 + \alpha_e C_e)$$
  
Hadrons:  $T_p(\gamma_p, \delta_p) = \frac{C_p}{c} \frac{1}{\sqrt{1 - \gamma_p^{-2}}} \left[ 1 + \left( \alpha_p - \frac{1}{\gamma_p^2} \right) \delta_p \right]$ 

where  $C_e$ ,  $C_p$  are the circumferences of the central orbits passing on average through centres of quadrupoles.

Suppose there is some difference between circumferences:

 $\Delta C = C_e - C_p \approx \Delta C$ (intended) ±15 mm

Last year, we measured the error on the LHC circumference to be about -12 mm with respect to design.

Similar values were found at LEP.

Expect an error of this magnitude when we build electron ring.



#### **Condition for stationary IP**

If bunches are to collide at the same IP on every turn, RF systems of the two rings must be locked in an appropriate frequency ratio so that:  $T_e(\delta_e) = T_p(\gamma_p, \delta_p)$ which can be solved to give  $\delta_p$  as a function of  $\delta_p$  and  $\Delta C$ , the other quantities in the equation being given by the chosen operating conditions.

## Somewhat similar to injection and ramp considerations for p-A mode of LHC

It is easy to solve the equations exactly. For exposition, we expand the solution in an appropriate ordering scheme of small quantities  $(\Delta C^{1/3}, \gamma_p^{-1/2}, \delta_p)$ 

$$\delta_e \approx \frac{\alpha_p}{\alpha_e} \delta_p - \frac{\Delta C}{\alpha_e C_p} + \frac{1}{2\alpha_e \gamma_p^2}$$

Thus, the damping partition and emittance become functions of  $\delta_p$ ,  $\Delta C$ ,  $\gamma_p$ .



#### Limits on hadron beam momentum

- At HERA, electron beam momentum was deliberately varied and caused proton beam to move by some mm in the arcs.
- At LHC, we are much more restricted for machine protection reasons and because the tune is larger

With normal beam intensities:

 $-0.0005 < \delta_p < 0.0005$  (gives 1 mm orbit shift in arc QFs)

With very low intensity pilot beams:

 $\alpha_e \sim \frac{1}{Q_x^2}$ 

 $-0.003 < \delta_p < 0.003$  (gives 6 mm orbit shift in arc QFs)

Constraint probably not relaxed with experience.

Together with the revolution period constraint, this fixes the range of damping partition and emittance accessible with a given optics.



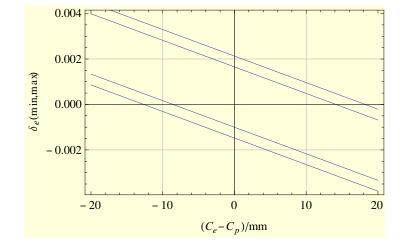
### Weak bend solution (1)

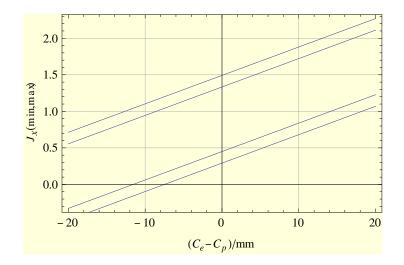
- This is similar to the solution proposed in last year's talk on the basis of thin-lens analytical theory.
- Cell length is half of LHC's only way to get the emittance.
- Consider the limits on emittance for electrons constrained by collisions with both protons and <sup>208</sup>Pb<sup>82+</sup> nuclei (deuterons are in-between).
- This solution gives the maximum energy for given RF power but has problems of very weak fields at injection discussed earlier.

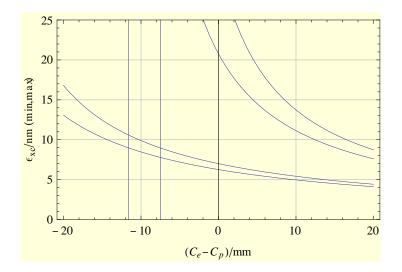


#### Weak bend solution (2)

| OpticsPlot | ( <sup>1</sup> C <sub>1</sub> 120<br>100<br>40<br>40<br>40<br>40<br>10 20<br>0<br>10 20<br>30<br>40<br>50<br>s/m | OpticsFile                                | FODO-2009-09-02-04-06-12.tfs                   |
|------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|
| MADfile    | FODO-2009-09-02-04-06-12.madx                                                                                    | MADTerminalOutput                         | FODO-2009-09-02-04-06-12.mou                   |
| LFODO      | 53.4515 Meter                                                                                                    | phiFODO                                   | 0.0170739                                      |
| fB         | 0.9                                                                                                              | gB                                        | 0.5                                            |
| mux        | 90 °                                                                                                             | muy                                       | 60 °                                           |
| Ncell      | 368.                                                                                                             | Lcells                                    | 19670.1 Meter                                  |
| KQF        | 0.0513543                                                                                                        | KQD                                       | -0.0419588                                     |
| Lbend      | 23.1532 Meter                                                                                                    | Lquad                                     | 1.Meter                                        |
| Brho       | 233.495 Meter Tesla                                                                                              | øBend                                     | 2712.12 Meter                                  |
| Bbend      | 0.0860933 Tesla                                                                                                  | dBdxQF                                    | 11.991 Tesla<br>Meter                          |
| dBdxQD     | _ <u>9.79716 Tesla</u><br>Meter                                                                                  | betxQF                                    | 82.5598 Meter                                  |
| DxQF       | 0.581358 Meter                                                                                                   | betyQF                                    | 27.7087 Meter                                  |
| betxQD     | 17.2616 Meter                                                                                                    | DxQD                                      | 0.302629 Meter                                 |
| betyQD     | 103.345 Meter                                                                                                    | I1                                        | 0.00743455 Meter                               |
| 12         | 6.29541×10 <sup>-6</sup><br>Meter                                                                                | 13                                        | 2.32121×10 <sup>-9</sup><br>Meter <sup>2</sup> |
| 15         | 1.0909×10-11<br>Meter                                                                                            | 18                                        | 0.00104772<br>Meter                            |
| alphac     | 0.000102627                                                                                                      | deltas                                    | -0.00150216                                    |
| deltaep    | $-0.0014772 - \frac{0.116796 \delta C}{Meter}$                                                                   | 0.00165227 - 0.116796 <i>8</i> C<br>Meter | EGeV                                           |
| kappa      | 0.5                                                                                                              | Je                                        | 1.5                                            |
| Jx         | 1.5                                                                                                              | Jy                                        | 1                                              |
| Jep        | 332.854                                                                                                          | UO                                        | 783.15 ElectronVolt Mega                       |
| taux       | 0.0105977 Second                                                                                                 | tauy                                      | 0.0158966 Second                               |
| taue       | 0.0105977 Second                                                                                                 | Ex                                        | 8.30703 Meter Nano                             |
| Exc        | 6.23027 Meter Nano                                                                                               | Eyc                                       | 3.11514 Meter Nano                             |
| sigE       | 0.0013295                                                                                                        | sigxQF                                    | 0.0010544 Meter                                |
| sigxQD     | 0.000519062 Meter                                                                                                | sigyQF                                    | $0.000293797\sqrt{\text{Meter}^2}$             |


J.M. Jowett, D. Tommasini, 2nd CERN-ECFA-NuPECC Workshop on the LHeC , Divonne, 2 September 2009


5


70.



#### Weak bend solution (3)







Limited range of Jx variation, shifts down for Pb ions.

To get design emittance, need ~ 15 mm circumference difference.

How do we arrange that ?



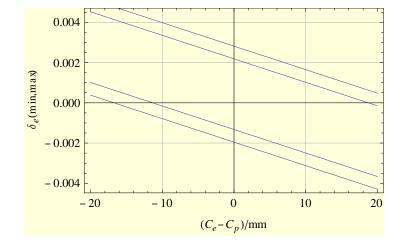
## Medium strength bends (1)

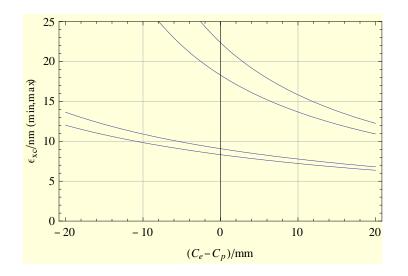
#### Field of 0.135 T at 70 GeV.

- Basis of preliminary specification we sent to colleagues at BINP.
- Use empty spaces for synchrotron radiation absorbers decoupled from magnets ?
  - Power distribution and feasibility to be studied

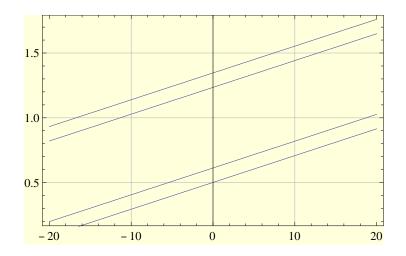


#### Medium strength bends (2) រុ ភ្<sup>120</sup>គ


1.15


| OpticsPlot | T 001 + T 00<br>T 000 + T 000 + T 00<br>T 000 + T 000 + | OpticsFile                                | FODO-2009-09-02-01-10-35.tfs                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|
| MADfile    | FODO-2009-09-02-01-10-35.madx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MADTerminalOutput                         | FODO-2009-09-02-01-10-35.mou                   |
| LFODO      | 53.4515 Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | phiFODO                                   | 0.0170739                                      |
| fB         | 0.573955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gB                                        | 0.9                                            |
| mux        | 90 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | muy                                       | 60 °                                           |
| Ncell      | 368.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lcells                                    | 19670.1 Meter                                  |
| KQF        | 0.0513539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KQD                                       | -0.0419586                                     |
| Lbend      | 14.7654 Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lquad                                     | 1.Meter                                        |
| Brho       | 233.495 Meter Tesla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ρBend                                     | 1729.59 Meter                                  |
| Bbend      | 0.135 Tesla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dBdxQF                                    | 11.9909 Tesla<br>Meter                         |
| dBdxQD     | _ <u>9.79713 Tesla</u><br><u>Meter</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | betxQF                                    | 82.5562 Meter                                  |
| DxQF       | 0.539359 Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | betyQF                                    | 27.7088 Meter                                  |
| betxQD     | 17.262 Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DxQD                                      | 0.251433 Meter                                 |
| betyQD     | 103.345 Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I1                                        | 0.00561837 Meter                               |
| 12         | 9.87162×10 <sup>-6</sup><br>Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                        | 5.70748×10 <sup>-9</sup><br>Meter <sup>2</sup> |
| 15         | 2.05071×10-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18                                        | 0.000874169                                    |
|            | Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | Meter                                          |
| alphac     | 0.0000775562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | deltas                                    | -0.00282314                                    |
| deltaep    | -0.00195472 - 0.116796 <i>8</i> C<br>Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00218638 - 0.116796 <i>8</i> C<br>Meter | EGeV                                           |
| kappa      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Je                                        | 1.5                                            |
| Jx         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JY                                        | 1                                              |
| Jep        | 177.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00                                        | 1228.03 ElectronVolt Mega                      |
| taux       | 0.00675847 Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tauy                                      | 0.0101377 Second                               |
| taue       | 0.00675847 Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ex                                        | 9.95865 Meter Nano                             |
| Exc        | 7.46899 Meter Nano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Eyc                                       | 3.73449 Meter Nano                             |
| sigE       | 0.00166483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sigxQF                                    | 0.00119286 Meter                               |
| sigxQD     | 0.000551497 Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sigyQF                                    | 0.000321681 $\sqrt{\text{Meter}^2}$            |

70




#### Medium strength bends (3)





J.M. Jowett, D. Tommasini, 2nd CERN-ECFA-NuPECC Workshop on the LHeC , Divonne, 2 September 2009



Limited range of Jx variation, shifts down for Pb ions.

To get design emittance, need ~ 25 mm circumference difference.

How do we arrange that ?

 $\sim 12\%$  loss in max energy w.r.t. weak bend solution



#### Fixing the e-ring circumference ?

Other machines have considered path-length chicanes.

Looks very difficult for LHeC – shift whole e-ring by  $\sim$  4 mm radially!

Incorporate something variable in by-pass schemes ?

We categorically deny that there was an unsuccessful attempt to implement a pathlength chicane in the LHC last year.





#### Summary

- We have considered normal (weak) and stronger dipole magnets for e-ring arcs despite loss of energy reach.
- Solutions given for weak and medium strength bends (stronger seems unacceptable).
  - Half-apertures ~(40 mm, 15 mm)
- Coupling to hadron ring puts severe constraints on e-ring circumference.
  - Circumference errors may shift the accessible range of emittances
  - Earth tides ?
  - Use of damping partition limited
  - Strong interest in making shorter, stronger quadrupoles also - more magnet studies.



## **Backup slides**

