

Present LHC Ion Injector Chain

- ECR ion source (2005)
 - Provide highest possible intensity of Pb²⁹⁺
- RFQ + Linac 3
 - Adapt to LEIR injection energy
 - strip to Pb⁵⁴⁺
- LEIR (2005)
 - Accumulate and cool Linac3 beam
 - Prepare bunch structure for PS
- PS (2006)
 - Define LHC bunch structure
 - Strip to Pb⁸²⁺
- SPS (2007)
 - Define filling scheme of LHC

Electron-nucleus (e-A) collisions

- The LHC will operate as a nucleus-nucleus (initially Pb-Pb) collider
 - Physics programme is expected to include:
 - Pb-Pb at $\sqrt{s_{NN}} = 5.5 \,\mathrm{TeV}$
 - p-Pb at
 - A-A where A may be Ca, O, ...
- Natural possibility of colliding electrons with ²⁰⁸Pb⁸²⁺ nuclei
 - Requires maintenance of LHC ion injector complex (source-LINAC3-LEIR) through to the time of operation of LHeC
 - Also requires inclusion of ion capability in new generation of injector synchrotrons (PS → PS2, SPS → SPS2 ??)
- Electron-deuteron e-d collisions would require a completely new source (at least!)
 - Present CERN complex does not foresee deuterons

e-Pb collisions in Ring-Ring

- Present nominal Pb beam for LHC
 - Same beam size as protons, fewer bunches $k_b = 592$ bunches of $N_b = 7 \times 10^7$ ²⁰⁸Pb⁸²⁺ nuclei
- Assume lepton injectors can create matching train of e⁻

$$k_b = 592$$
 bunches of $N_b = 1.4 \times 10^{10} \text{ e}^{-1}$

Lepton-nucleus or lepton-nucleon luminosity in ring-ring option at 70 GeV

$$L = 1.09 \times 10^{29} \text{ cm}^{-2} \text{s}^{-1} \iff L_{\text{en}} = 2.2 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$$
 gives 11 MW radiated power

 May be possible to exploit additional power by increasing electron single-bunch intensity by factor 592/2808=4.7.

e-Pb collisions in Linac-Ring (1)

- Present nominal Pb beam for LHC
 - Same beam size as protons, fewer bunches $k_b = 592$ bunches of $N_b = 7 \times 10^7$ ²⁰⁸Pb⁸²⁺ nuclei
- Assume lepton injectors can create matching train of e⁻ - non-regular bunch spacing with same average beam current and power
 - Scale from F. Zimmermann in EPAC2009

The electron beam size is assumed to be matched to the size of the protons, $\sigma_p^* = \sigma_e^*$, as a smaller electron beam could have adverse effects on the proton beam lifetime. For round-beam collisions, the luminosity is

$$L = \frac{1}{4\pi e} \frac{N_{b,p}}{\epsilon_p} \frac{1}{\beta_p^*} I_e H_{hg}, \tag{1}$$

where e denotes the electron charge, and the subindices p or e refer to protons or electrons. The luminosity (1) depends only on the p beam brightness $(N_{b,p}/\epsilon_p)$ with $N_{b,p}$

e-Pb collisions in Linac-Ring (2)

	LHeC-RR	LHeC-RL
		high lumi
e ⁻ energy at IP [GeV]	60	60
luminosity $[10^{32} \text{ cm}^{-2} \text{s}^{-1}]$	29	29 [†] (2.9 [‡])
bunch population $[10^{10}]$	5.6	$0.19^{\dagger} (0.02^{\ddagger})$
e^- bunch length [μm]	$\sim \! 10,\! 000$	300
bunch interval [ns]	50	50
norm. hor.&vert. emittance [μ m]	4000, 2500	50
average current [mA]	135	$7^{\dagger} (0.7^{\ddagger})$

$$L = 1.19 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1} \iff L_{\text{en}} = 2.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$

which is about a factor 2 better than Ring-Ring with similar level of optimism about using available power (or a factor 10 if Ring-Ring is taken to be limited in bunch intensity).

Electron-deuteron collisions?

- Needs new source at CERN
- Two possibilities after source:
 - Existing Pb ion injector chain (Linac3, RFQ, LEIR) could be used but many details need study intensity will be limited
 - Rough estimate: 1/100 charge per bunch of p in LHC
 - New pre-injector Linac4 (under construction), PSB, d-injection, etc.
 - Not designed for deuterons, would require new RFQ, first simulation indicated limited transmission but may hope for more than Linac3
 - Feasibility of this option needs more study of whole injector chain, probably need shutdown to switch to/from protons
 - Rough estimate: 1/10 charge per bunch of p in LHC
- Both options need new RFQ + other modifications, will cost few MCHF, feasibility cannot be guaranteed at this stage.

Very(!) tentative e-D luminosity

- Rough guess for beam via Linac3
 - Same beam size as protons, fewer bunches as for Pb

$$k_b = 592$$
 bunches of $N_b = 1.7 \times 10^9$ deuterons

Assume lepton injectors can create matching train of e⁻

$$k_b = 592$$
 bunches of $N_b = 1.4 \times 10^{10} \text{ e}^-$

Lepton-nucleus or lepton-nucleon luminosity in ring-ring option at 70 GeV

$$L = 2 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$$
 gives 11 MW radiated power

- Optimist might hope for maybe 10-50 times more if Linac4 and other systems work well.
- A lot of further study required!!

e-A collisions Summary

- Natural possibility of colliding electrons with ²⁰⁸Pb⁸²⁺ nuclei but requires long-term policy:
 - Maintenance of LHC ion injector complex (source-LINAC3-LEIR) through to the time of operation of LHeC
 - Also requires inclusion of ion capability in new generation of injector synchrotrons (PS → PS2, SPS → SPS2 ??)
- Other nuclei such as Ca (expected for use in LHC AA collisions) should also be possible with present ion source and pre-injectors.
- Electron-deuteron e-D collisions would require a completely new source (at least!)
- Linac-Ring has potential for few times higher luminosity at Ring-Ring accessible energies.

Backup slides

Nominal Pb-Pb collision parameters

		Injection	Collision		
Beam parameters					
Lead ion energy	[GeV]	36900	574000		
Lead ion energy/nucleon	[GeV]	177.4	2759.		
Relativistic "gamma" factor		190.5	2963.5		
Number of ions per bunch		$7. \times 10^{7}$			
Number of bunches		592			
Transverse normalized emittance	$[\mu\mathrm{m}]$	1.4 ^a	1.5		
Peak RF voltage (400 MHz system)	[MV]	8	16		
Synchrotron frequency	[Hz]	63.7	23.0		
RF bucket half-height		1.04×10^{-3}	3.56×10^{-4}		
Longitudinal emittance (4σ)	[eV s/charge]	0.7	2.5^{b}		
RF bucket filling factor		0.472	0.316		
RMS bunch length ^c	[cm]	9.97	7.94		
Circulating beam current	[mA]	6.12			
Stored energy per beam	[MJ]	0.245	3.81		
Twiss function $\beta_x = \beta_y = \beta^*$ at IP2	[m]	10.0	0.5		
RMS beam size at IP2	μ m	280.6	15.9		
Geometric luminosity reduction factor F^d		-	1		
Peak luminosity at IP2	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$1. \times 10^{27}$		

Nominal Pb-Pb, lifetime parameters

		Injection	Collision			
Interaction data						
Total cross section	[mb]	-	514000			
Beam current lifetime (due to beam-beam) ^a	[h]	-	11.2			
Intra Beam Scattering						
RMS beam size in arc	[mm]	1.19	0.3			
RMS energy spread $\delta E/E_0$	$[10^{-4}]$	3.9	1.10			
RMS bunch length	[cm]	9.97	7.94			
Longitudinal emittance growth time	[hour]	3	7.7			
Horizontal emittance growth time ^b	[hour]	6.5	13			
Synchrotron Radiation						
Power loss per ion	[W]	3.5×10^{-14}	2.0×10^{-9}			
Power loss per metre in main bends	$[\mathrm{Wm}^{-1}]$	8×10^{-8}	0.005			
Synchrotron radiation power per ring	[W]	1.4×10^{-3}	83.9			
Energy loss per ion per turn	[eV]	19.2	1.12×10^{6}			
Critical photon energy	[eV]	7.3×10^{-4}	2.77			
Longitudinal emittance damping time	[hour]	23749	6.3			
Transverse emittance damping time	[hour]	47498	12.6			
Variation of longitudinal damping partition number ^c		230	230			
Initial beam and luminosity lifetimes						
Beam current lifetime (due to residual gas scattering) ^d	[hour]	?	?			
Beam current lifetime (beam-beam, residual gas)	[hour]	-	< 11.2			
Luminosity lifetime ^e	[hour]	-	< 5.6			