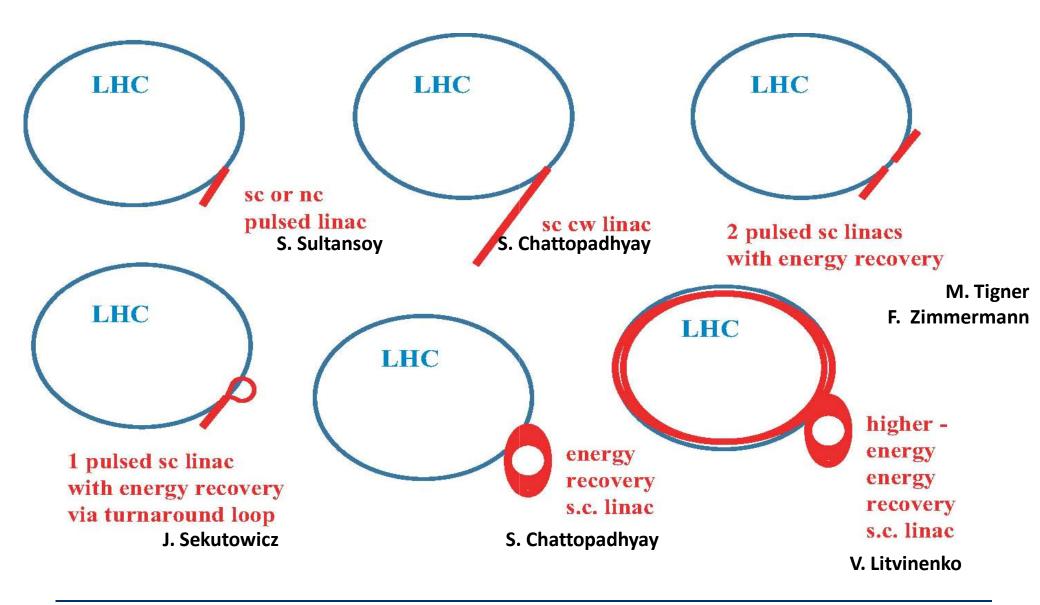
Possible e⁻ and e⁺ sources for LHeC

Louis Rinolfi

Thanks to O. Brüning, A. Vivoli and F. Zimmermann


Linac-Ring Option for the LHeC

O. Brüning Summary of Accelerator working group at the 1st LHeC workshop

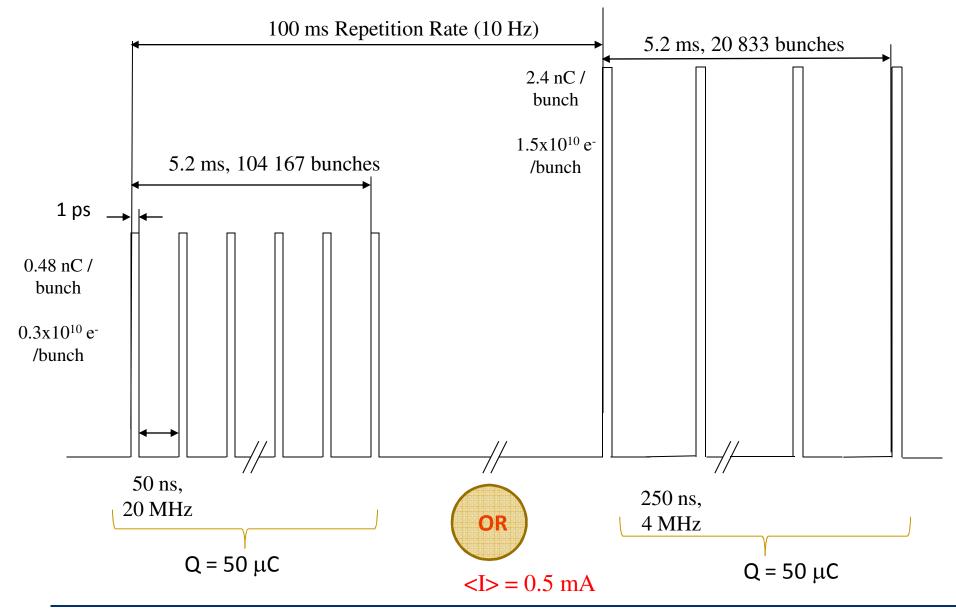
- → new concept and not much experience (we need a 60+GeV linac, probably with CW operation and with energy recovery)
- \rightarrow this implies a lot of R&D and development of new tools / studies
- → has the big advantage that it can largely decouple the construction from the LHC operation

→ compatibility of positron operation with energy recovery?

LR scenarios

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

LHeC parameters


"The Large Hadron-Electron Collider (LHeC) at the LHC" by F. Zimmermann et al. (27 co-authors)

PAC09 Conference, Vancouver, May 2009

		· · ·		
	LHeC-RR	LHeC-RL	LHeC-RL	LHeC-RL
		high lumi	100 GeV	high energy
e ⁻ energy at IP [GeV]	60	60	100	140
luminosity $[10^{32} \text{ cm}^{-2} \text{s}^{-1}]$	29	29† (2.9‡)	2.2	1.5
bunch population $[10^{10}]$	5.6	0.19† (0.02 [‡])	0.3 (1.5)	0.2 (1.0)
e ⁻ bunch length [μ m]	$\sim 10,000$	300	300	300
bunch interval [ns]	50	50	50 (250)	50 (250)
norm. hor.&vert. emittance [μ m]	4000, 2500	50	50	50
average current [mA]	135	7† (0.7 [‡])	0.5	0.5
rms IP beam size [μ m]	44, 27	7	7	7
repetition rate [Hz]	CW	CW	10 [5% d.f.]	10 [5% d.f.]
bunches/pulse	N/A	N/A	71430 -	-14286-
pulse current [mA]	N/A	N/A	10	10
beam pulse length [ms]	N/A	N/A	5	5
cryo power [MW]	0.5	20	4	6
total wall plug power [MW]	100	100	100	100
				16

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

LHeC-RL (100 GeV) beam structure flexibility

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

Generation of polarized electron

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

Comparison for e⁻ source parameters

Microbunch width $(t_p)_{LHeC} = (t_p)_{ILC}$ at the photocathode => Bunch compressor requested

Parameters	LHeC	LHeC	ILC	CLIC
	100 GeV	100 GeV	500 GeV	500 GeV
Electrons/bunch (N _{e-})	0.3E10	1.5E10	~ 3E10	1E10
Charge / bunch (q _e)	0.48 nC	2.4 nC	4.8 nC	1.6 nC
Number of bunches (n _b)	104 167	20 833	2625	354
Width of bunch (t _p)	1 ns	1 ns	1 ns	~ 0.1 ns
Time between bunches (Δt_b)	50 ns	250 ns	~360 ns	0.500 ns
Width of pulse (T _B)	5.208 ms	5.208 ms	1 ms	0.177 ms
Pulse repetition rate (F_B)	10 Hz	10 Hz	5 Hz	50 Hz
Charge per pulse (C _B)	50 000 nC	50 000 nC	~12 600 nC	566 nC
Average current from gun ($C_B \times F_B$)	0.5 mA	0.5 mA	0.063 mA	0.028 mA
Peak current of bunch (I peak)	0.48 A	2.4 A	4.8 A	16 A
Current density (1 cm radius)	0.15 A/cm ²	0.76 A/cm ²	1.5 A/cm ²	5 A/cm ²
Polarization	> 80%	> 80%	>80%	>80%

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

cw laser parameters for LHeC e⁻ source

$$E_{L} = \frac{hc}{q} \frac{Q}{\lambda \times QE} \qquad \qquad E_{L}(J) = 1.24 \times 10^{-6} \frac{Q(nC)}{\lambda(nm) \times QE}$$

 $\lambda \thickapprox 775$ - 780 nm for GaAs photocathodes

 $QE \approx 0.2 \%$ (Nagoya, JLAB, SLAC)

 $\eta \approx 70\%$ for the bunching system

Parameters	Units	LHeC	CLIC
		100 GeV	500 GeV
Laser energy on photocathode ($E_B = E_L / \eta$)	J	40 000 x10 ⁻⁶	647x10 ⁻⁶
Peak power ($P_p = E_B / T_B$)	W	7.7	3654
Average power ($P_a = E_B \times F_B$)	W	0.4	0.032
Repetition frequency (F _B)	Hz	10	50

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

Pulsed laser parameters for LHeC e⁻ source

 $\lambda \approx 775$ - 780 nm for GaAs photocathodes

QE ≈ 0.2 %

η ≈ 90%

Parameters	Units	LHeC	LHeC	CLIC
		100 GeV	100 GeV	500 GeV
Micropulse repetition frequency (fp)	MHz	20	4	2000
Micropulse length (t _p)	ns	0.1	0.1	0.1
Micropulse laser energy on photocathode (E_B = E_L / $\eta)$	J	0.4x10 ⁻⁶	2.1x10 ⁻⁶	1.3x10 ⁻⁶
Micropulse peak power (Pp = E_B / t_p)	W	426	2133	13
Macropulse laser energy on photocathode ($E_m = E_B x n_b$)	J	0.044	0.044	460x10 ⁻⁶
Macropulse peak power ($P_m = E_m / T_B$)	W	8.5	8.5	2600
Macropulse average power ($P_a = E_m \times F_B$)	W	0.440	0.440	23
Repetition frequency (F _B)	Hz	10	10	50

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

Simulations for ILC and CLIC e⁻ sources

F. Zhou / SLAC

Parameters	Units	ILC 500 GeV	CLIC 3 TeV		Possible for LHeC 100 GeV
Gun voltage	kV	140	140		140
Injector energy	MeV	76	20		20-80
Initial charge at the gun	nC	5	1		2.7
Capture efficiency	%	94	88		90
Initial bunch length at the cathode	ns	1.3	156		1
Final bunch length (FWHM)	ps	20	14		1
Energy spread (FWHM)	keV	100	100	1	?
Normalized rms emittance	mm.mrad	40	22]	10 - 100

To produce ultra-short pulse beam with high charge (< 10 ps, @1 nC/bunch) is not yet successful Low beam emittance with high charge (< 1 π .mm.mrad, @1 nC/bunch) is not yet realized

R&D is ongoing at SLAC (A. Brachmann, J. Sheppard, F. Zhou), JLAB (M. Poelker), Japan (T. Omori, M.Kuriki, N. Yamamoto), ...

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

Some challenges for LHeC e⁻ source

Gun:

Reliable load locked gun

High voltage 100 kV - 350 kV

Photocathode:

Production of the full current (0.5 mA) with space charge and surface charge limits High polarization: 80 % - 90% High Quantum Efficiency: 0.2 - 1 % Long life time

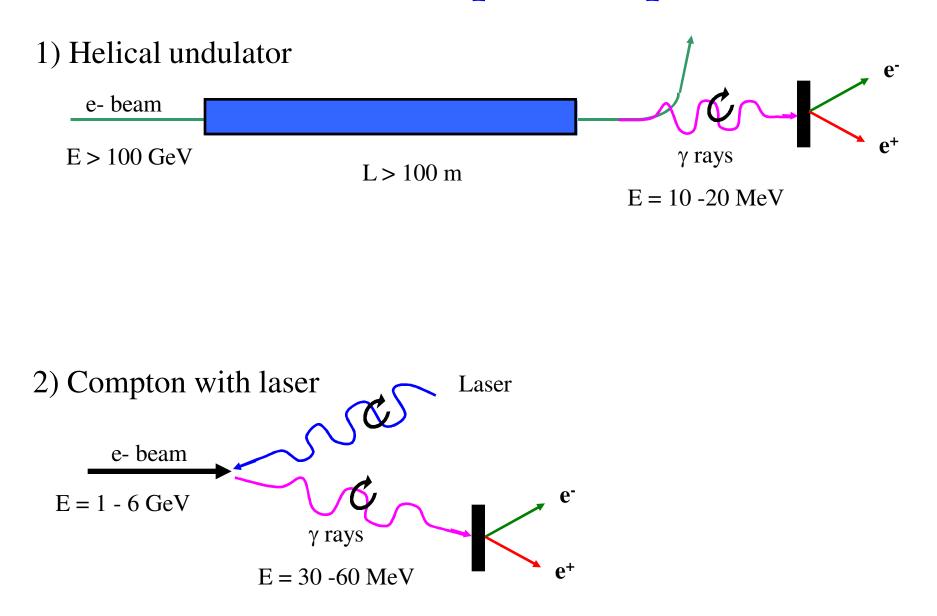
Laser:

Laser frequency:4 to 20 MHzPulse length:0.1 to 1 nsPulse energy:~ 40 mJ

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

DC guns for polarized e⁻ source

JLAB 100 kV electron gun (courtesy from M. Poelker)


SLAC 120 kV electron gun (courtesy from J. Sheppard)

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

Generation of polarized positron

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

Two methods to produce polarized e⁺

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

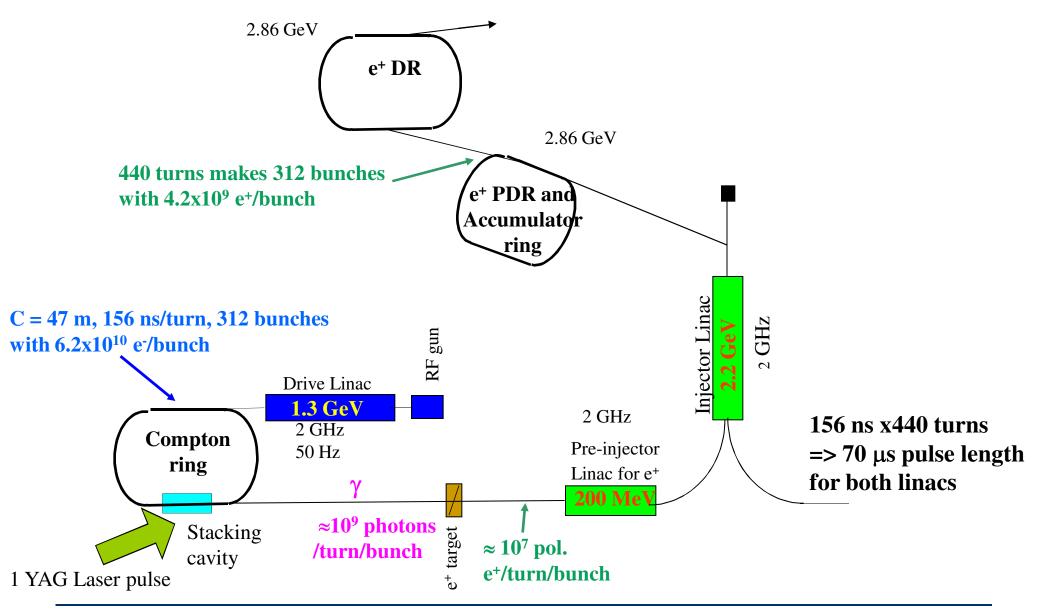
Flux of e⁺

	SLC	CLIC	ILC	LHeC		
Positrons / bunch	3.5 x 10 ¹⁰	0.64x10 ¹⁰	2 x 10 ¹⁰	1.5x10 ¹⁰		
Bunches / macropulse	1	312	2625	20833		
Macropulse Rep Rate	120	50	5	10		
Positrons / second	0.042 x 10 ¹⁴	1 x 10 ¹⁴	2.6 x 10 ¹⁴	31 x 10 ¹⁴		
x 24 x 12 x 30						

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

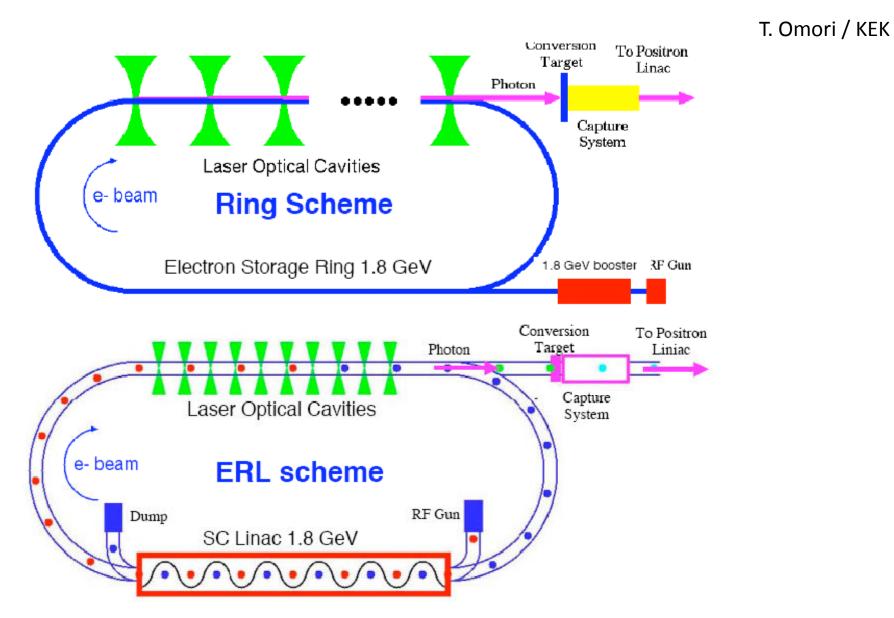
Compton sources

- 1) **Compton Ring:** long bunch length; large charge; burst collision => cooling time
 - Storage ring
 - Laser stacking cavities
 - Stacking ring for e⁺ (low γ flux and Ne⁺ / N $_{\gamma}$ < 1%)

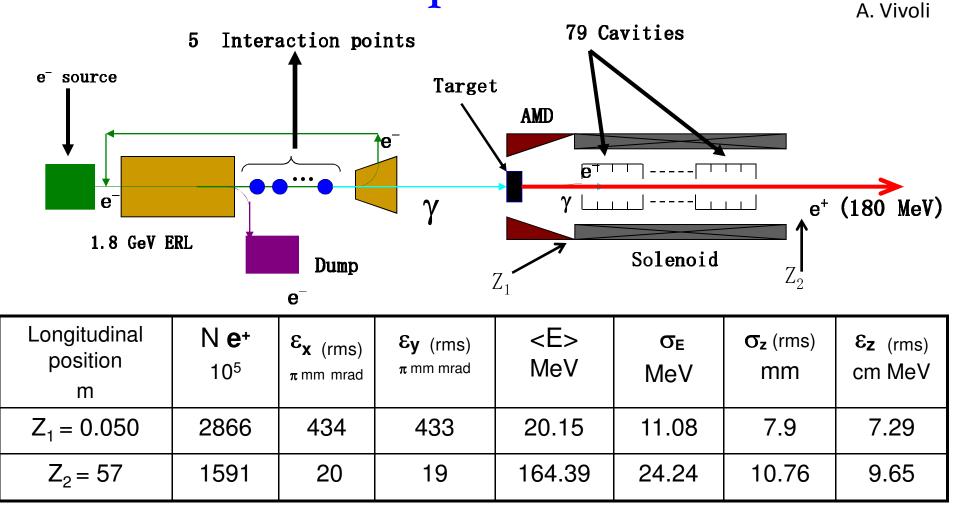

2) Compton ERL: short bunch length, small charge, CW => trade off between charge and rep. rate
➢ Energy Recovery Linac (sc)

- ➤ Laser stacking cavities
- > Stacking ring for e⁺ (low γ flux and Ne⁺ / N $_{\gamma}$ < 1%)

3) Compton Linac:


- ≻Linac at few GeV energy (4 6 GeV) and powerful laser (CO₂ or YAG)
- > Several optical cavities for interaction points but without laser stacking
- ➢ No stacking ring for e⁺

CLIC Compton scheme


2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

Compton Ring and Compton ERL for ILC

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

Scheme of the capture section for ILC

Useful $\gamma \epsilon$ (rms) = 6400 mm.mrad

Transverse emittance too large:

=> Damping Ring

=> or collimation => reduce e⁺ yield

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

 σ_t (rms)= 36 ps

Bunch length too long => Bunch compressor

Considerations about e⁺ target

Classical target material:Tungsten (W)Density: 19.25 g/cm^3 PEDD(*):35 J/gRadiation length (χ_0):3.44 mm

Simulations done with EGS code for a W target (and ILC pulse): Photon beam mean energy ~ 30 MeV (from ERL Compton) Studied length = $0.4 \chi_0 = 1.4 \text{ mm}$

Results : 0.830 MeV deposited in a volume of ~ 32 mm^3 PEDD = $2.2 \times 10^{-13} \text{ J/g}$ / photon $\Rightarrow 1.6 \times 10^{14}$ photons per macropulse maximum on the target

Assuming $N_{e+}/N_{\gamma} \sim 2 \% \Rightarrow 3.2 \times 10^{12} e^+$ captured with transverse emittances of $\gamma \epsilon = 6500$ mm.mrad

Target damages by:

- Energy deposition
- Acoustic shock wave
- ► Temperature rise

If we want $\gamma \epsilon = 65$ mm.mrad, a rough linear scaling => 3.2 x 10¹⁰ e⁺ are captured

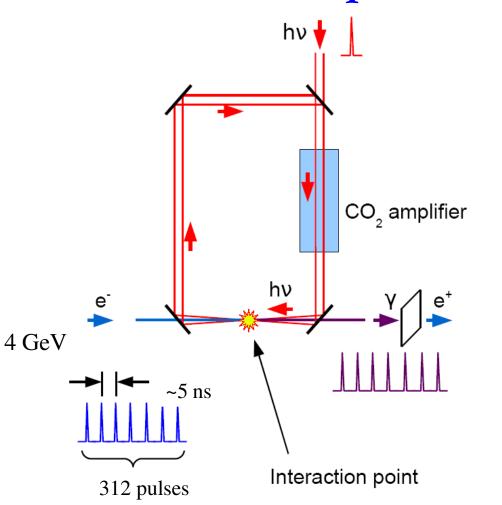
To be compared to 3.1 x 10¹⁴ e⁺ requested per macropulse => Needs stacking !!!

(*) PEDD =Peak Energy Deposition Density. This value defines a limit where the target brakes

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

My preliminary conclusions for the LHeC e⁺ source

1) Due to the large number of bunches (between 20 000 and 100 000), it seems difficult to implement a Damping Ring either to perform e⁺ stacking or to reduce transverse emittances or to do both.


2) Due to the large amount of energy requested to produce one LHeC e⁺ macropulse, a single classical target will be destroyed and therefore seems excluded. However one could imagine several rotating targets working in parallel => technology challenge + reliability issues.

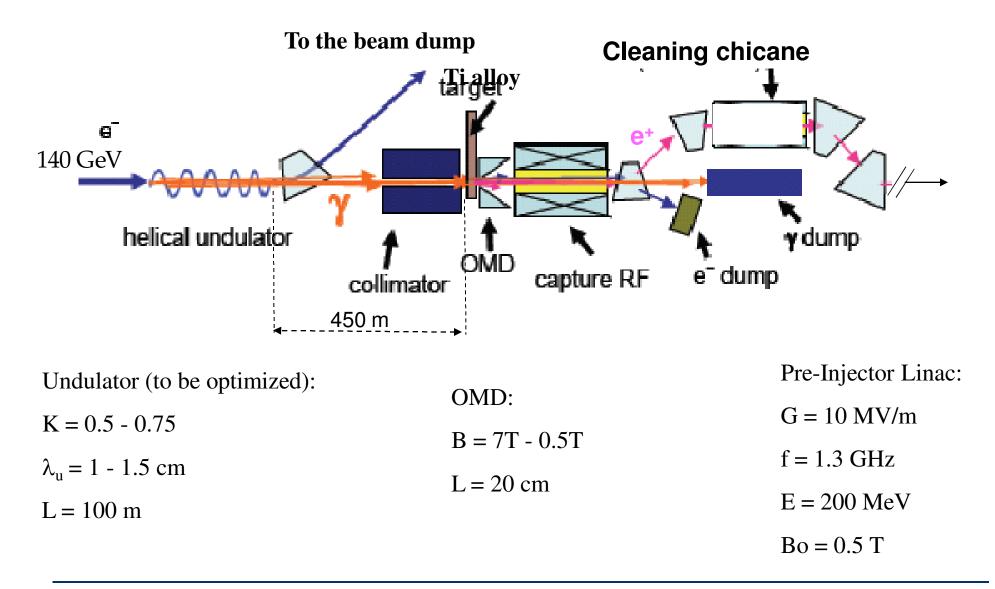
3) Unless smart ideas are found, the Compton Ring and the Compton ERL do not seems suitable for the LHeC polarized e⁺ source with the present parameters.

4) Compton Linac and Undulator schemes remain possible solutions.

5) Can we envisage an unpolarized e⁺ source for the LHeC ?

Compton Linac for e⁺ source

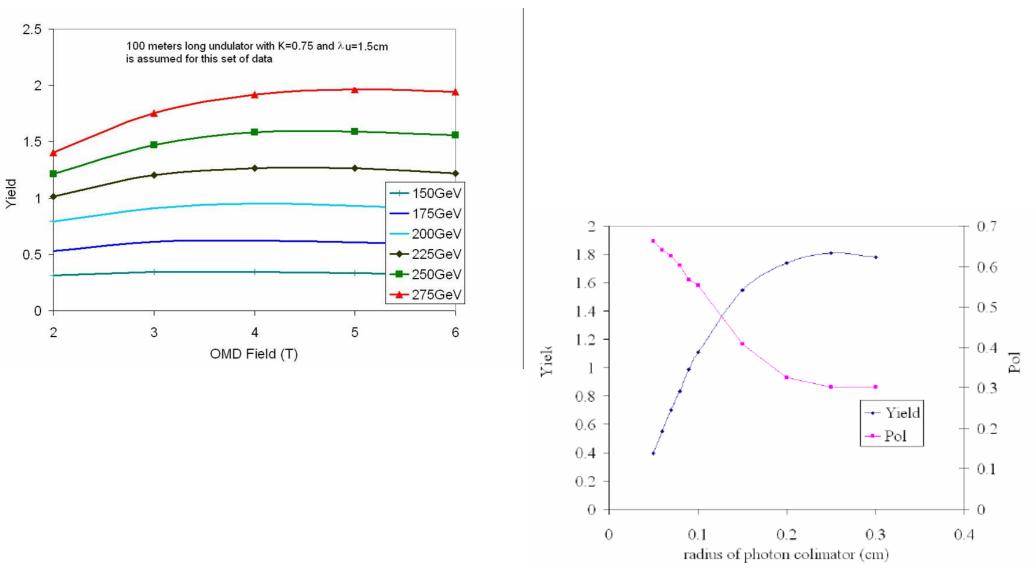
 $N_{\gamma} / N_{e^-} = 1$ (demonstrated at BNL) $N_{e^+} / N_{\gamma} = 0.02$ (expected) i.e. ≈ 50 gammas to generate 1 e⁺


<u>Data for CLIC:</u> $N_{e+} = 6.4 \times 10^9$ / bunch ~ 1 nC $N_{e-} = 0.32 \times 10^{12}$ / bunch ~ 50 nC

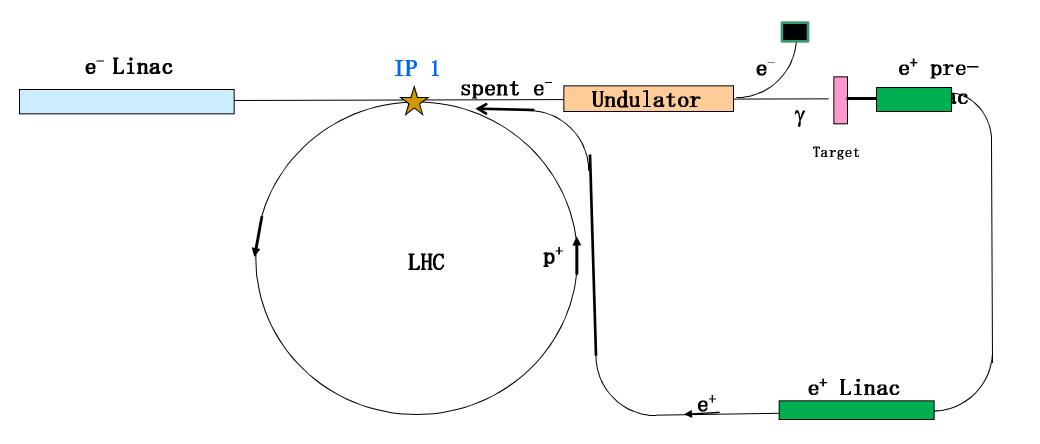
With 5 nC / e⁻ bunch and 10 Compton IP's => 1 nC / e⁺ bunch

For LHeC, one would need to increase the number of targets/capture sections working in parallel in order to reach the requested intensity. => Cost and reliability issues See talk of V. Yakimenko / BNL

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

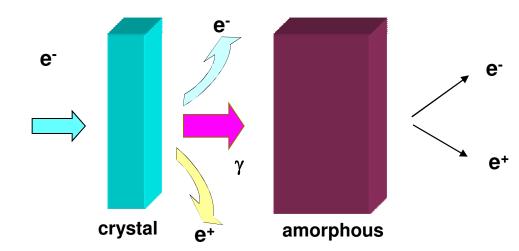

Possible LHeC undulator based on ILC scheme

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne


Results of simulations for an undulator

W. Gai, W. Liu / ANL

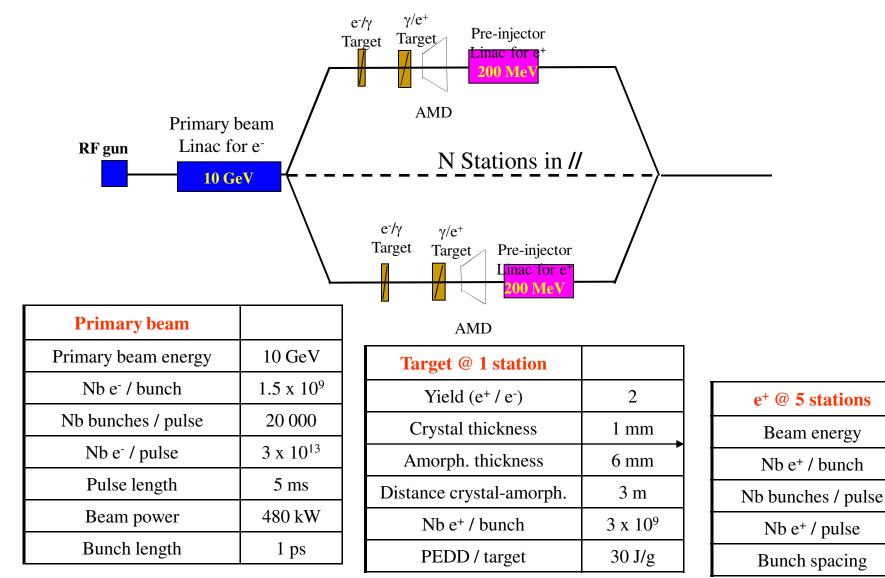
2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne


Proposal for LHeC with Undulator

Unpolarized e⁺ based on hybrid targets for CLIC

Electron beam on the crystal:

- energy = 5 GeV
- beam spot size = 2.5 mm
- > First target is a crystal oriented along <111> axis where channeling process occurs
 > Second target is amorphous.



Target		Crystal	Amorphous
Material		W	W
Length	mm	1.4	10
Beam power deposited	kW	0.2	7.5
Deposited P / Beam Power	%	0.2	8
Energy lost per volume	$10^9 \mathrm{GeV/mm^3}$	0.8	2
Peak energy deposition density (PEDD)	J/g	6.8	18

Simulations by O. Dadoun / LAL and V. Strakhovenko / BINP

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

A possibility for unpolarized e⁺ at LHeC

2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne

L. Rinolfi

200 MeV

15 x 10⁹

20 000

 $3 \ge 10^{14}$

250 ns

Some challenges for LHeC e⁺ source

- 1) Unpolarized e⁺ with several parallel target stations
- 2) Devices for Undulator scheme (Helical undulator magnet, dumps,...)
- 3) Devices for Compton Linac (High power linac, cavities at IP, powerful laser systems,...)
- 4) Photon collimators
- 5) Targets issues (Heat load dynamics, beam energy deposition, shock waves, breakdown limits, activation,)
- 6) Adiabatic Matching Device (AMD)
- 7) Capture and acceleration sections (Transport and collimation of large emittances)
- 8) Find out a maximum e⁺ yield (Trade off between yield, polarization and emittances)
- 9) Polarization issues (Analyze systematic errors of polarization measurements)
- 10) Development of codes + efficient use of existing codes (EGS4, FLUKA, Geant4, PPS-Sim, ...)
- 11) Integration issues for the target station (remote handling in radioactive area)

12) Radioactivity issues

13)

Summary

≻ The LHeC e⁻ source is challenging, still requires R&D but is doable.

➤ The LHeC polarized e⁺ source is extremely demanding. The e⁺ flux is 12 times more than ILC and 30 times more than CLIC. No reliable solution exists yet for polarized e⁺ for both projects. This needs a strong R&D program. However several paths would be possible for a future solution.

➢ Fortunately many synergies exist with other projects (e.g. LHC upgrade, CLIC, ILC, eRHIC,...). Intense studies are ongoing for ILC and CLIC.

> Can the Physics considers unpolarized e⁺ in a first stage ?

> In order to propose good and realistic e^- and e^+ sources for the LHeC Conceptual Design Report for 2010, the collaboration from other institutes is crucial.