
High Parton Density Working Group

Brian A Cole Columbia University

on behalf of conveners: N. Armesto, B. Cole, P. Newman, A. Stasto

Many, many contributions to our work, workshops, impossible to cover everything in this talk. Apologies in advance for needing to be selective.

High Parton Density Working Group

• Previous meetings:

- –Divonne 2008
 - ⇒First low-x pseudo-data available
- -Conveners meeting, February 2009
 - ⇒Draft outline of HPD contribution to CDR
- -Madrid DIS 2008 pre-workshop, April 2008
- -HPD WG Pre-meeting @ CERN, June 2008
 - ⇒Contributions covering all aspects of draft outline
 - Extensive discussion re: strategy for pitching HPD part of LHeC physics program.

Draft CDR HPD Outline

I. Introduction

- II. Unitarity/BBL
 - a. QCD and unitary/black-body limit: saturation
 - b. Recombination, saturation models, saturation scale (GLR, color glass condensate and JIMWLK, BK)
 - c. Dipole models
 - d. Nuclear targets
 - e. Significance for heavy ion program
 - f. Significance for the ultrahigh energy neutrino interactions
- III. Lepton probes and main signatures
 - a. Low-x physics at LHC, limitations
 - b. Why electron probes
 - c. F_2 : quark sensitive
 - d. Diffraction, why a good starting point, A and b sensitivity
 - e. Exclusive diffraction
 - f. other gluon sensitive measurements
- IV. HERA data \leftrightarrow saturation models
 - a. K-GB-W fits to HERA data
 - b. Updated dipole models and uncertainties
 - c. Regge models

Point of nomenclature: black body

black disk

- d. Saturation in nuclei: A-dependence, LT shadowing, distinguishing saturation
- V. Diffraction
 - 1. Exclusive vector meson
 - a. Forward tagging (neutron, proton, dissociating $\mathbf{p}/\mathbf{n})$
 - b. Plot of $\sigma(w)$ for different Q^2 proton and Pb, also for heavy flavor
 - c. Plot of $A(\operatorname{mplitude})$ vs b for different W, proton and Pb
 - 2. Inclusive
 - a. Deconstructing 50% diffractive/total
 - b. Question: is diffractive/total more interesting (ideal) w/ nuclear targets
 - c. Interesting question about DGLAP failure in evolution of ${\cal F}_2^d$ H1 data
 - d. Semi-inclusive ${\cal F}_2^d/{\cal F}_2$ ratio (charm, jets)
 - e. Unitarity limit on the dipole scattering amplitudes versus dipole size
 - f. Leading twist versus multiple scattering contributions to nuclear shadowing and diffraction on nuclei
 - g. Understanding the Gribov limit in dF_2^d/dM^2
- VI. Inclusive measurements, structure functions
 - a. $F_2,\,F_L$ statistical, systematic errors for proton, Pb vs (x,Q^2) for varying electron beam energies
 - b. Dipole model with saturation, fit with DGLAP (PDF flexibility, resummed approach)
 - c. Tests of violation of DGLAP evolution
 - d. Jets, heavy flavor as alternative measure of ${\cal G}(x,Q^2)$
- VII. Jet and multi-jet observables, parton dynamics
 - a. Forward di-jets, angular decorrelation
 - b. Unintegrated PDFs
- VIII. Experimental issues
 - a. Nuclear radiative corrections, systematic errors
 - b. Forward acceptance
 - c. Forward electron, photon tagging
 - d. Forward neutron tagging
 - e. Forward proton tagging

Feedback on Draft CDR Outline

- My personal interpretation of feedback from Madrid and discussion at CERN workshop:
 - Draft outline may suffer somewhat from the "can't see the forest for the trees problem"
 - ⇒Compreshensive overview of the physics of saturation and the variety measurements that could help elucidate that phyiscs.
 - But, for LHeC CDR we (also) need to have concise physics message/goals.
 - ⇒Extensive discussion @ CERN on this point
 - And we need to focus on measurements most important in exploring the physics at HPD.
 - ⇒This particular point has been a key part of the discussion in all of our meetings so far.

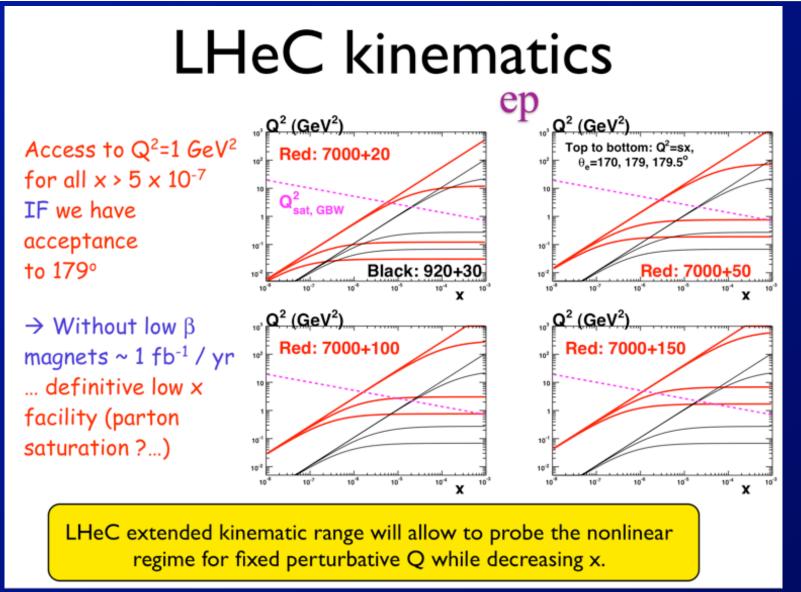
HPD: Physics message/goals

- At CERN meeting it was argued (most explicitly by Albacete) that we should broaden the physics focus:
 - from "saturation" to "non-linear evolution"
 - ⇒ Avoid being tied to any specific model
 - general agreement from all participants
- An attempt to phrase physics goals in one sentence appropriate for (e.g.) summary of LHeC physics
 - "Search for and elucidate the role of non-linearities in QCD evolution at high parton densities indicating an approach to the unitarity limit"
 - ⇒Can we come out of this meeting with an improved/ refined version of this statement of phyiscs goals

HPD and e-A

- General view of participants in HPD discussions/meetings:
 - -<u>e-A is essential part of LHeC HPD</u> physics program
- Also a consensus that e-A does not get enough emphasis in LHeC discussions.
 - Partly a sociological problem
 - ⇒Anything involving nuclei is viewed as "messy" by high-energy physicists
- Some questions we need to answer before proceeding with CDR
 - How to overcome this prejudice?
 - How to better state the case for e-A?
 - How to raise the importance of e-A in LHeC program?

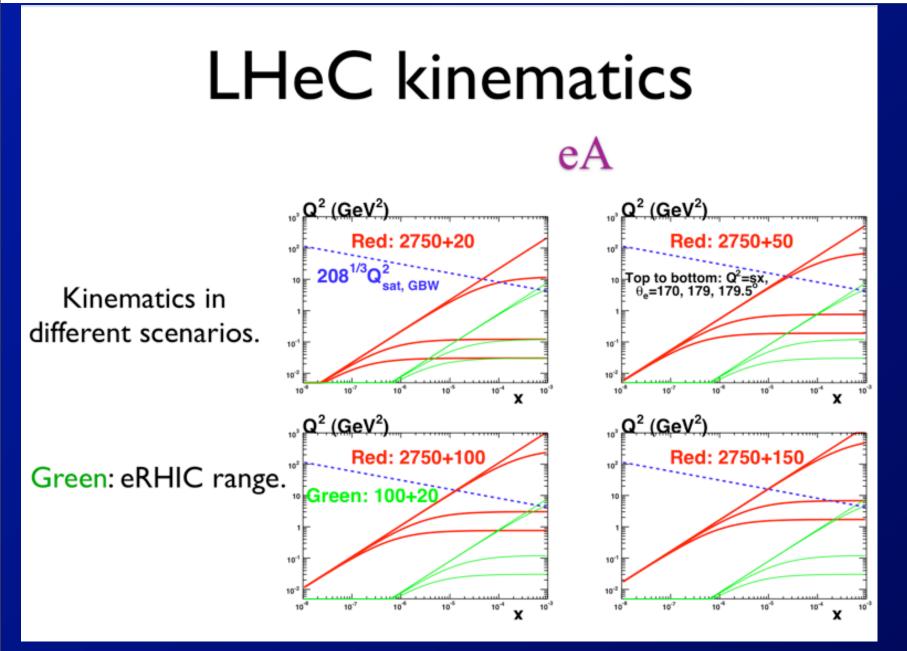
HPD and e-A (2)


Possible extension of previous goals statement:

- "Search for and elucidate the role of non-linearities in QCD evolution at high parton densities indicating an approach to the unitarity limit"
 - ⇒Extend existing e-p measurements to lower x (at high enough Q² to be safely perturbative).
 - ⇒Using nuclei to increase parton density in controlled manner at fixed kinematics (at ...)

Also important to LHeC motivation:

- Connections to other physics programs. For e-A:
 - Non-linearity/saturation crucial to understanding initial conditions of heavy ion collisions
 - Improved nuclear DIS measurements of broad importance to nuclear physics community
 - Space-time evolution of partons: nuclear SIDIS


LHeC low-x kinematics (e-p)

From A. Stasto talk at CERN workshop

Acceptance down to ~1° essential to low-x program

LHeC low-x kinematics (e-A)

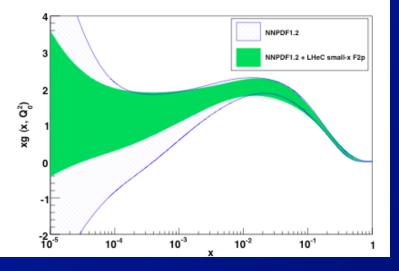
From A. Stasto talk at CERN workshop

How to "see" non-linearities

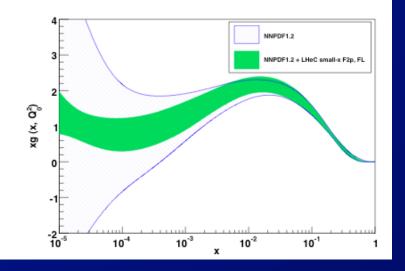
Each of HPD meetings has spent substantial time on crucial problem(s):

- How to convincingly demonstrate non-linear evolution in QCD?
- Is there model-independent (model-insensitive) way to tell that we are seeing approach to unitarity limit?

General consensus:


 While inclusive F₂ measurements are easiest, have smallest systematic errors, they may not provide the most sensitive evidence for non-linear evolution

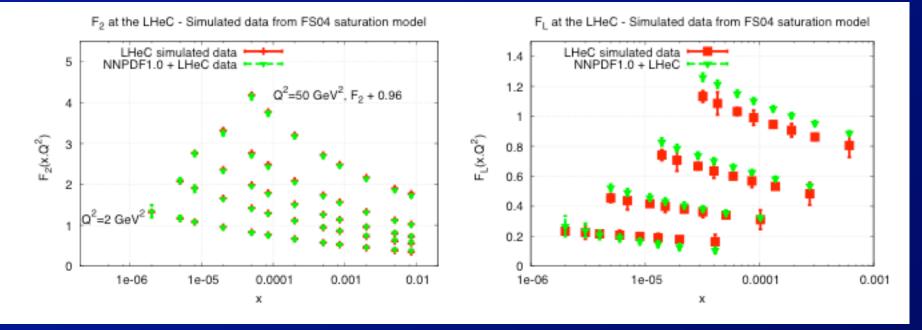
Alternatives (non-diffractive)


- FL more directly sensitive to g(x, Q²) but hard and will take time to run different energies
- $-F_2^{c}$ also sensitive to g(x, Q²)
- Forward di-jets

LHeC Data and PDFs

 F_2^p and F_2^L NLO DGLAP in NNPDF analysis: Gluon uncertainties with F_2^p LHeC data only

 F_2^p and F_2^L NLO DGLAP in NNPDF analysis: Gluon uncertainties with F_2^p and F_L^p LHeC data

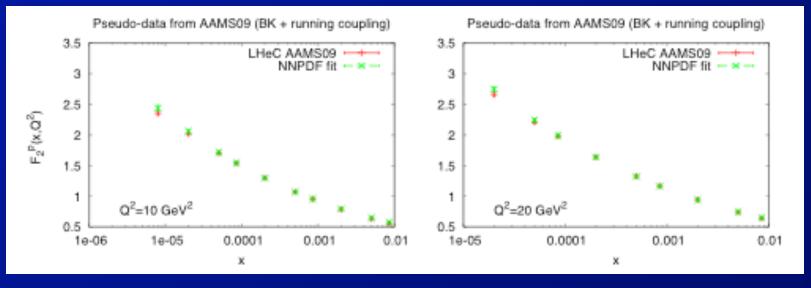


J. Rojo, from CERN HPD workshop, NNPDF analysis

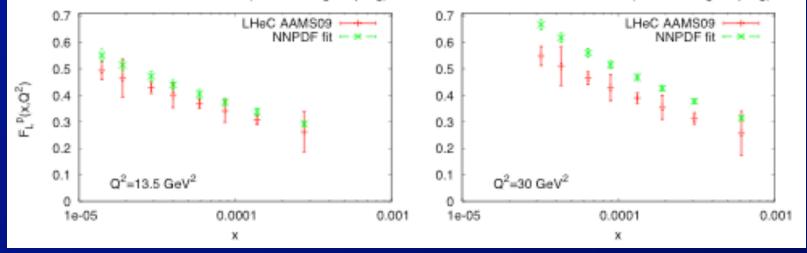
extraction of xg from LHeC pseudo-data (no saturation)

LHeC Data and PDFs, non-linearities?

J. Rojo, from CERN HPD workshop



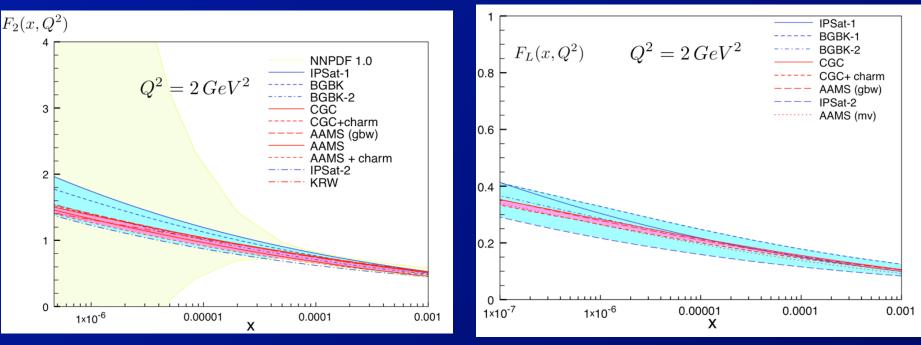
 Can we see failure of linear evolution (including low-x resummation) with e-p data from LHeC?


- NNPDF fits to pseudo-data w/ saturation (here FS04)
- Compare extracted PDFs, deviations indicate failure of linear evolution
 - \Rightarrow Need F_L to see significant

LHeC Data and PDFs, non-linearities?

J. Rojo, from CERN HPD workshop

Pseudo-data from AAMS09 (BK + running coupling)

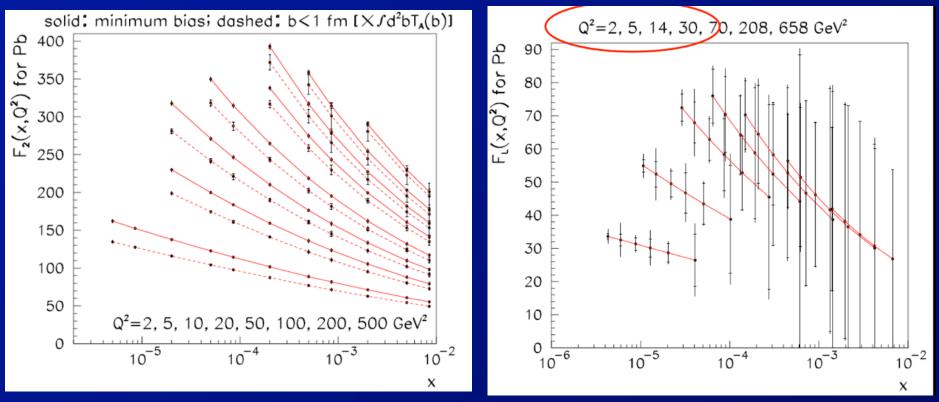


Similar conclusions w/ more modern saturation

Pseudo-data from AAMS09 (BK + running coupling)

F₂, F_L in saturation (dipole) models

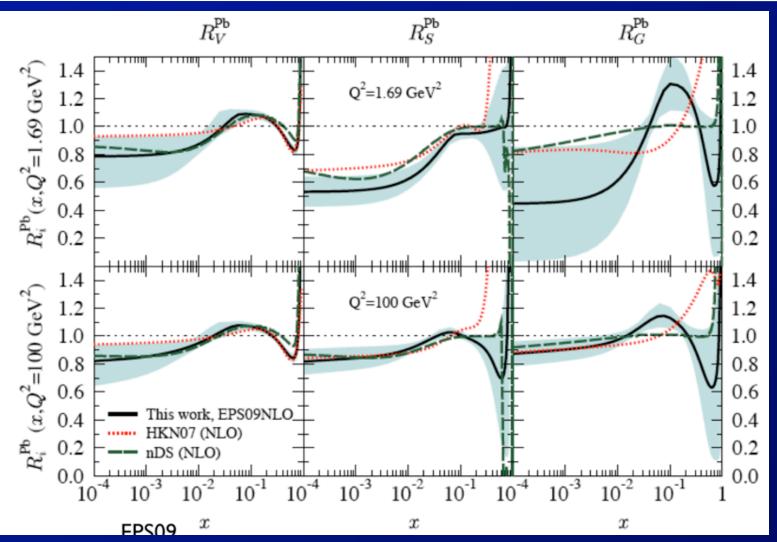
From J. Albacete, CERN HPD workshop


 Saturation naturally implemented in dipole picture, but how robust are the dipole calculations (model sensitivity)

- Compare a wide selection of dipole calculations that provide good fits to HERA data
 - ⇒Generally good agreement

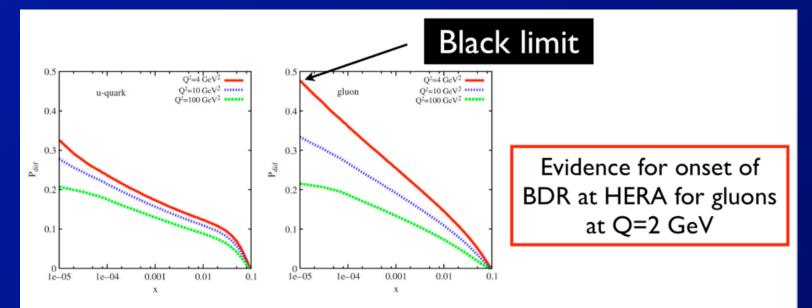
⇒Can define theoretical error (within assumptions)

Nuclear PDF, LHeC


N. Armesto, CERN HPD workshop

Nuclear pseudo-data for a given set of assumptions re: nuclear running

- Excellent statistics for F_2 , not so good for F_L
 - ⇒But, sensitive to assumptions re: nuclear operation
- F_L still as necessary with nuclei?

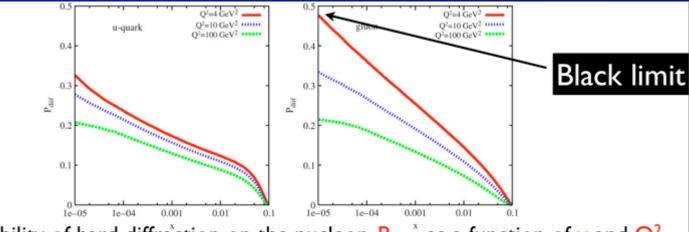

Nuclear PDFs, LHeC Improvement

 Have almost no knowledge of shadowing, antishadowing of gluons in nuclei, serious problem
 – LHeC huge improvement (Eskola)

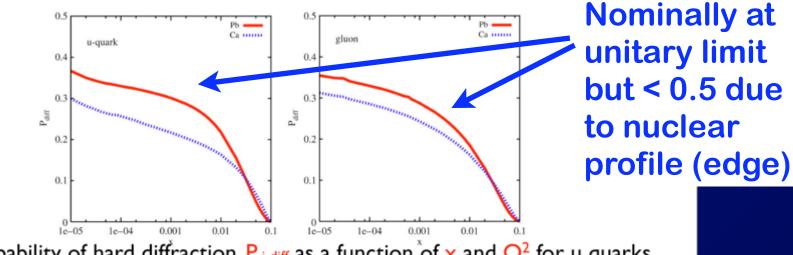
Diffraction, unitarity

Diffraction: probing approach to unitarity limit?

The probability of hard diffraction on the nucleon, $P_{j \text{ diff}}$ as a function of x and Q^2 for u quarks (left) and gluons (right) based on the current HERA data. Guzey et al


Warning - curves for $x \le 10^{-4}$ is extrapolation of the fits.

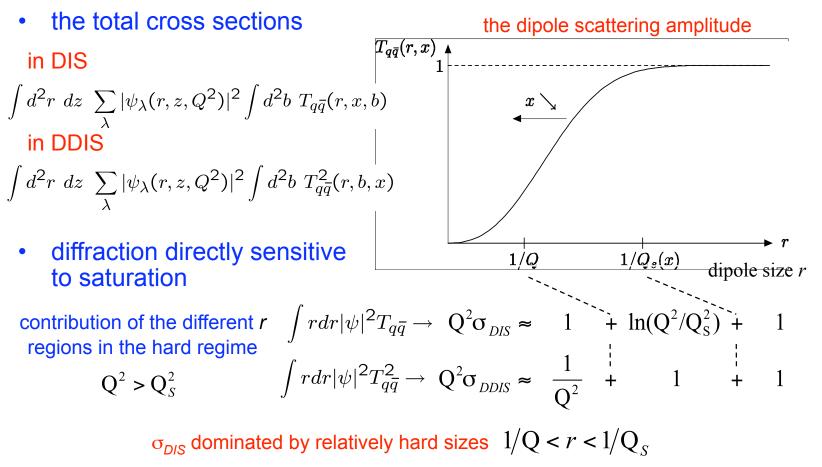
For gluon channel B=7 GeV⁻² leads to impact factor $\Gamma_{gg}(b=0, Q^2=4 \text{ GeV}^2) \sim 1$ for x ~10⁻³ \Rightarrow new regime? increase of B?


From M. Strikman, CERN HPD workshop

Diffraction, unitarity in nuclei

Diffraction: probing approach to unitarity limit?

The probability of hard diffraction on the nucleon, $P_{j \text{ diff}}$ as a function of x and Q^2 for u quarks (left) and gluons (right).

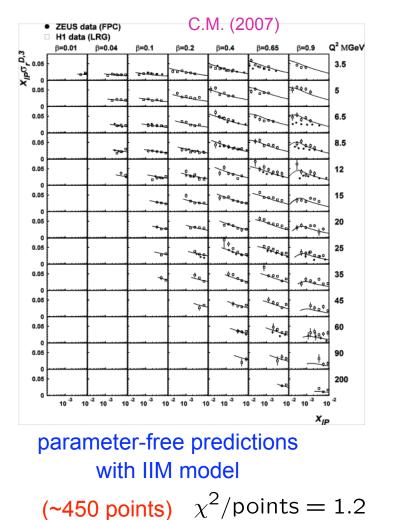

The probability of hard diffraction, $P_{j \text{ diff}}$ as a function of x and Q^2 for u quarks (left) and gluons (right) for $Q^2=4 \text{ GeV}^2$

From M. Strikman, CERN HPD workshop

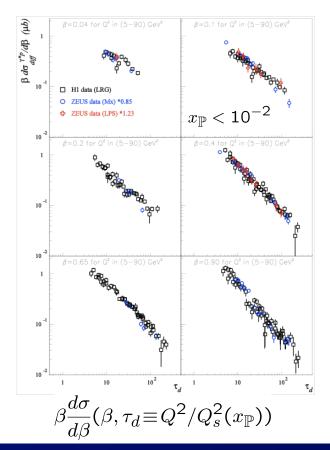
Diffraction via dipole picture

From C. Marquardt, CERN HPD workshop

Hard diffraction and saturation

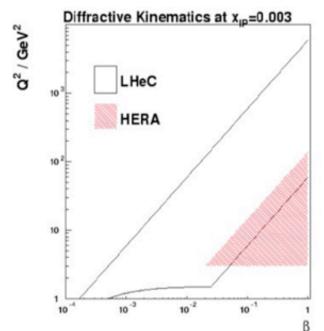


 σ_{DDIS} dominated by semi-hard sizes $r \sim 1/Q_s$

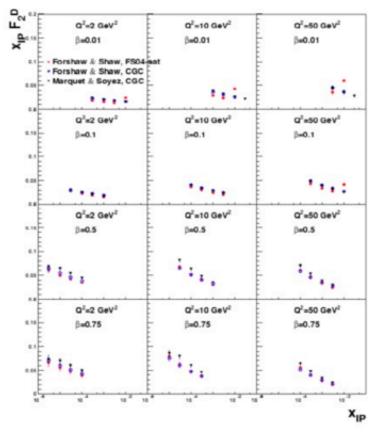

Diffraction, saturation, Hera

From C. Marquardt, CERN HPD workshop

Comparison with HERA data



geometric scaling C.M. and Schoeffel (2006) at fixed β , the scaling variable is $Q^2/Q_s^2(x_{\mathbb{P}})$



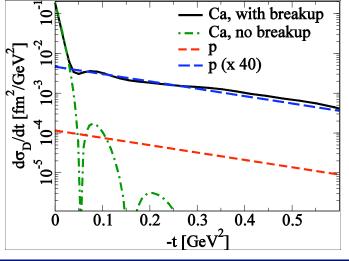
Inclusive Diffraction @ LHeC

Diffraction at LHeC: new possibilities

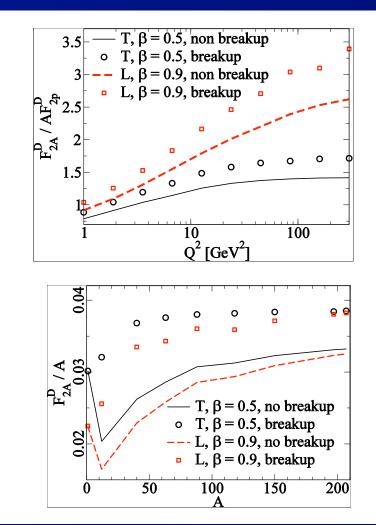
- Studies with I degree acceptance,
- Diffractive-PDFs
- Factorization in much bigger range
- Diffractive masses $M_X \sim 100 {
 m GeV}$ with $x_{I\!\!P} = 0.01$
- X can include W,Z,b

Forshaw, Marquet, Newman


Simulated diffractive data available

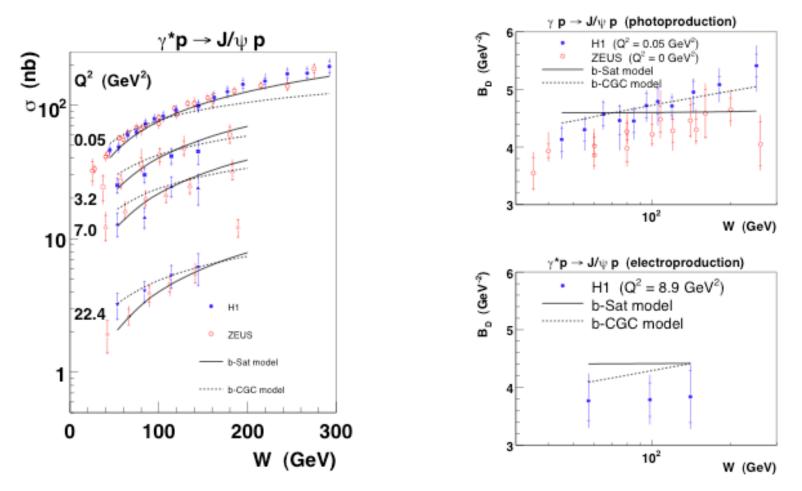

• From talk by P. Newman Divonne 2008

Nuclear Inclusive Diffraction


Kowalski, Lappi, C.M. and Venugopalan (2008)

$$\frac{F_2^{D,A}}{AF_2^{D,p}}(\beta, Q^2 = 5 \text{ GeV}^2, x_{\mathbb{P}} = 0.001)$$

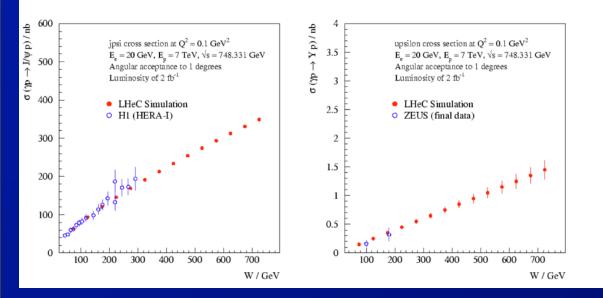
With nuclear break-up



Detection of nuclear break-up crucial.

Exclusive Diffraction

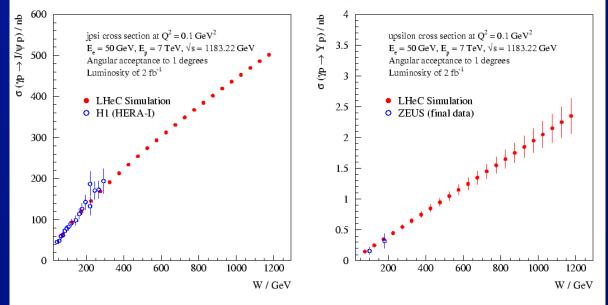
• From G. Watt, CERN HPD workshop


Exclusive J/ψ photoproduction at HERA

W dependence of J/ψ photoproduction favours b-Sat model.
Slope of B_D (t-slope) vs. W, i.e. α'_P, favours b-CGC model.

Exclusive Diffraction at LHeC

SPL Scenario - photoproduction cross secs



From P. Newman, CERN HPD workshop

e-p only

pseudo-data for two different LHeC scenarios

Dedicated Low x Ring-Ring Scenario

Current Status

Have calculations and/or pseudo-data for most channels of interest

- Missing pseudo-data for nuclear diffraction
- Not much for F₂^c -- especially test of sensitivity to non-linear effects as alternative to F_L.
- Jets are also behind other channels
- Lacking Monte Carlo/event generator studies
 - Especially for e-A (generator?)
 - ⇒Synergy with EIC effort

Have started looking into nuclear radiative corrections

- Needs serious effort
- How some questions raised above re: HPD physics in larger LHeC program.

Next Steps

Timeline

- This meeting: collect contributions. Specify the most interesting/sensitive observables.
- July-August 2009: upgrade the CDR section outline with more details/predictions/ calculations.
- Beginning of September 2009: Divonne workshop.
- September 2009: start detailed write-up of the CDR section.

•Next steps:

- Start writing based on results of this meeting
- Fill in the essential missing pieces
- How many measurements should appear in CDR?

From CERN HPD workshop