Electroweak precision and New Physics in LHeC

Soumitra Nandi

Dipartimento di Fisica Teorica, Univ. di Torino and INFN,

Sezione di Torino Torino, Italy

Soumitra Nandi EWNP LHeC (Divonne)

Plan of talk

- Motivation: LHeC
- DIS and Electroweak parameters
- New physics and Electroweak parameters
- Conclusions

Soumitra Nandi EWNP LHeC (Divonne) - p.2/21

Why New Physics?

History of matter and antimatter in the Universe, can not be accounted for by the KM mechanism

$$\frac{n_B}{n_\gamma} \approx 9.1 \times 10^{-11}$$

Strong CP problem ⇒ CP violation in strong interaction is very small

$$\theta_{QCD} \le 10^{-9}$$

- Hierarchy problem
- Dark matter/energy puzzle

Motivation: DIS

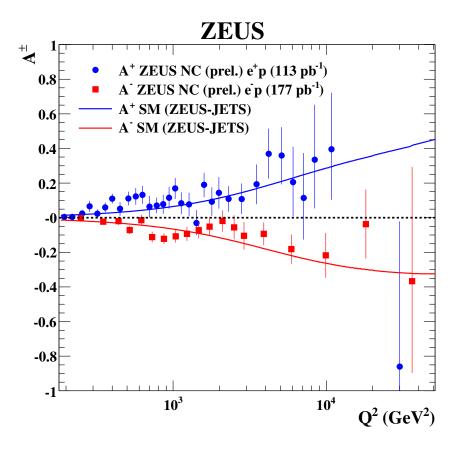
- What is the fundamental structure of matter, is there substructure of quarks and leptons?
- Do the fundamental interaction unify?
- What is the dynamics of quark-gluon interaction?
- What is the quark-gluon structure of the nucleon?

DIS is the cleanest approach ⇒ played an important role in understanding the interplay of electromagnetic, weak and strong interactions

HERA VS LHeC

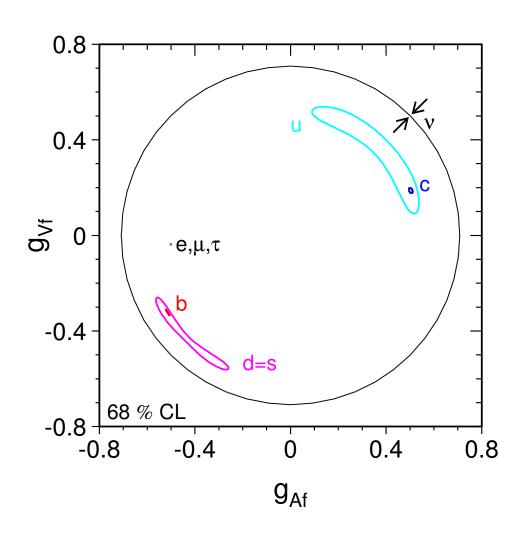
- 27.5GeV × 920GeV ep HERA was a high precision machine for QCD and modest precision machine for electroweak Physics
- The LHeC is a proposal for TeV scale DIS with the potential for significantly higher luminosity than HERA $(Lumi\approx 10^{33}cm^{-2}s^{-1})$
 - Kinematics: (140 GeV \times 7 TeV) machine with $\sqrt{s}=2TeV$, expected range for Q^2 is beyond 10^6GeV^2
- LHeC have considerably more asymmetric beam energy than HERA

Precision Physics and LHeC?


- LHeC is mainly build to study proton structure new QCD phenomena with great precision
- It has the potential to constrain the proton (and nuclei)
 PDFs to an unprecedent level of accuracy with important implication for LHC phenomenology
- It also has the potential to constrain the electroweak parameters a_f , v_f with great precision from NC-DIS cross section
- It's also useful to measure M_W mass precisely from CC-DIS cross section

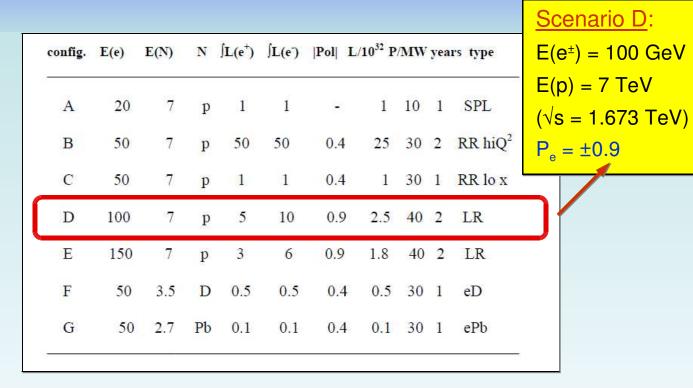
DIS cross section

$$\begin{split} &\frac{d^2\sigma^{\text{NC}}(e^{\pm}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4}[H_0^{\pm} + P_eH_{P_e}^{\pm}] \Rightarrow \text{NC cross section} \\ &H_{0,P_e}^{\pm} = Y_+ F_2^{0,P_e} \mp Y_- x F_3^{0,P_e} \\ &F_2^{0,P_e} = \sum_q x(q+\bar{q})A_q^{0,P_e} \qquad x F_3^{0,P_e} = \sum_q x(q-\bar{q})B_q^{0,P_e} \\ &Y_{\pm} = 1 \pm (1-y)^2 \\ &A_q^0 = e_q^2 - 2e_q v_q v_e \chi_Z + (v_q^2 + a_q^2)(v_e^2 + a_e^2)\chi_Z^2 \\ &B_q^0 = -2e_q a_q a_e \chi_Z + 4v_q a_q v_e a_e \chi_Z^2 \\ &A_q^{P_e} = 2e_q v_q a_e \chi_Z - 2(v_q^2 + a_q^2)v_e a_e \chi_Z^2 \\ &B_q^{P_e} = 2e_q a_q v_e \chi_Z - 2v_q a_q (v_e^2 + a_e^2)\chi_Z^2 \\ &\chi_Z = \frac{1}{\sin^2 2\theta_W} \left(\frac{Q^2}{M_Z^2 + Q^2}\right) \end{split}$$


Polarization asymmetry

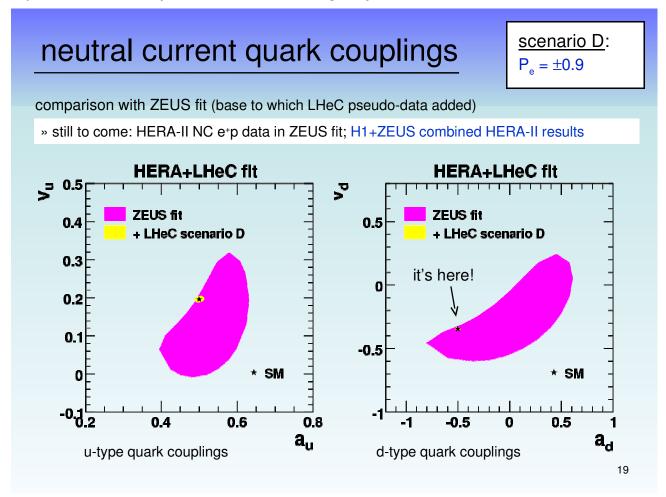
$$A^{\pm} = \frac{2}{P_e^+ - P_e^-} \frac{\sigma^{\pm}(P_e^+) - \sigma^{\pm}(P_e^-)}{\sigma^{\pm}(P_e^+) + \sigma^{\pm}(P_e^-)} \approx a_e v_q$$

Soumitra Nandi

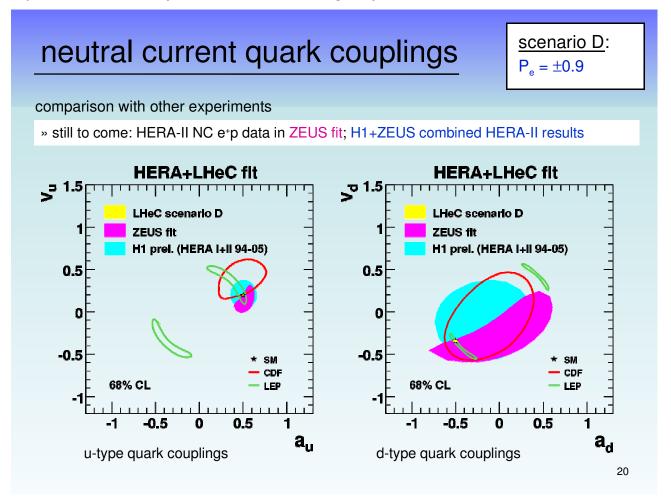

LEP measurements for a_f and v_f

Soumitra Nandi EWNP LHeC (Divonne) - p.9/21

see talk by Gwenlan at pre LHeC meeting, April, 2009


LHeC scenarios studied

... simulated LHeC data (M. Klein); mainly looked at scenario D (since it was produced first!) [available at: http://hep.ph.liv.ac.uk/~mklein/simdis09]


6

see talk by Gwenlan at pre LHeC meeting, April, 2009

Soumitra Nandi EWNP LHeC (Divonne) - p.1

see talk by Gwenlan on pre LHeC meeting, April, 2009

Soumitra Nandi

EWNP LHeC

(Divonne)

Points to be noted...

Analysis based on the following assumptions:

- Quark axial and vector coupling, v_q and a_q , has been taken as free parameters and fitted simultaneously with PDFs $\Rightarrow v_f \rightarrow v_f^{SM} + \Delta v_f$ $a_f \rightarrow a_f^{SM} + \Delta a_f$
- Lepton axial and vector couplings, a_e and v_e , has been fixed to there SM values
- Deviations Δv_q and Δa_q do not depend on x or $Q^2 \Rightarrow$ most of the new physics that could modify NC couplings would give rise to Q^2 dependent form factors

This analysis is good to test the SM prediction but not to quantify new physics effect, except few specific scenarios...

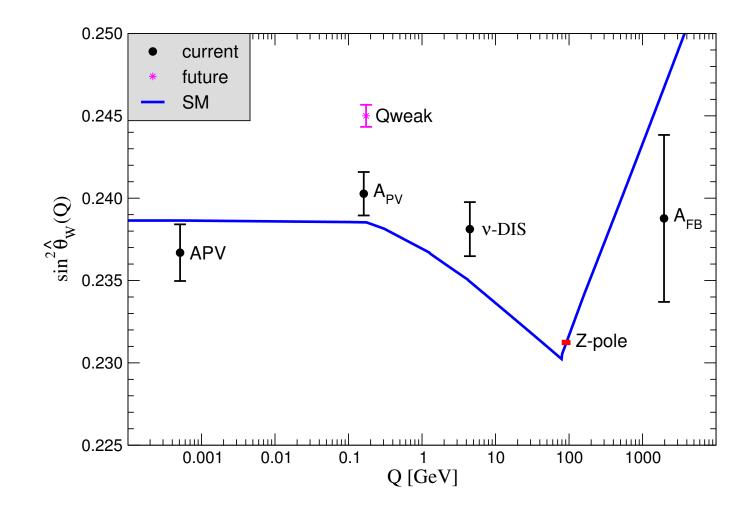
Leptophobic Z'

- Extra U(1) gauge group appear naturally in many extensions of the SM
- Particles associated with new U(1) are reasonably massive and have small mixing with the SM $Z \Rightarrow$ originating from E6 and S0(10)
- Leptophobic $Z' \Rightarrow Z'$ does not couple to SM leptons \Rightarrow avoids traditional collider searches \Rightarrow can not be produced in Drell-Yan collisions

$$\mathcal{L}_{NC} = \frac{g}{2\cos\theta_W} \sum_{i} \left[Z_0^{\mu} (v_S^i \bar{\psi} \gamma_{\mu} \psi + a_S^i \bar{\psi} \gamma_{\mu} \gamma_5 \psi) + V_0^{\mu} (v_N^i \bar{\psi} \gamma_{\mu} \psi + a_N^i \bar{\psi} \gamma_{\mu} \gamma_5 \psi) \right]$$

$$v_{eff}^f = \cos \zeta v_S^f + \sin \zeta v_N^f \quad a_{eff}^f = \cos \zeta a_S^f + \sin \zeta a_N^f$$

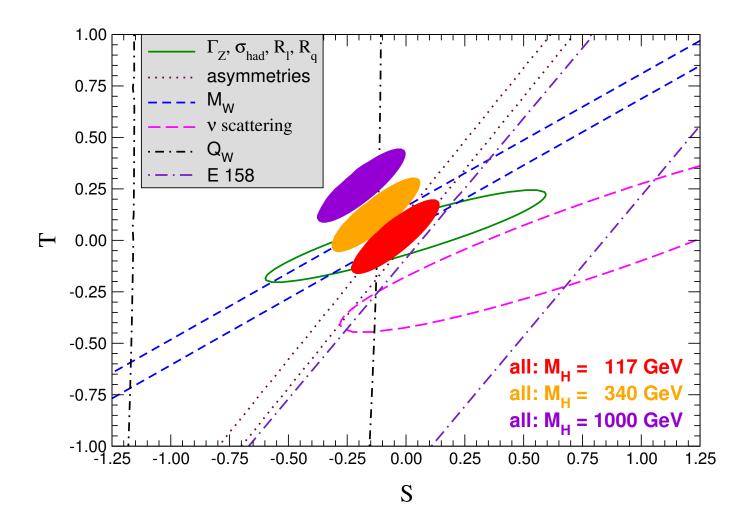
see talk by Gwenlan on pre LHeC meeting, April, 2009


neutral current quark couplings

uncertainties on the neutral current quark couplings: $\Delta_{\text{uncorr}} \pm \Delta_{\text{corr}}$

	a _u (0.5)	v _u (0.196)	a _d (-0.5)	v _d (-0.346)
А	0.05 ± 0.09	0.073 ±0.120	0.21 ± 0.44	0.112 ± 0.225
В	0.01 ± 0.01	0.010 ± 0.067	0.01 ± 0.02	0.020 ± 0.010
С	0.02 ± 0.02	0.014 ± 0.007	0.03 ± 0.05	0.030 ± 0.012
D	0.01 ± 0.01	0.003 ± 0.007	0.01 ± 0.02	0.006 ± 0.009
Е	0.01 ± 0.01	0.004 ± 0.007	0.01 ± 0.02	0.007 ± 0.009

(note: with LHeC NC and CC included)


44

Soumitra Nandi

EWNP LHeC

(Divonne)

Soumitra Nandi

EWNP LHeC

(Divonne)

Contact interactions

- New interactions between electrons and quarks involving mass scale above the center-of-mass energy can modify the DIS $\it ep$ scattering cross section at high $\it Q^2$
- Vector four-fermion contact interaction :

```
\sum_{i,j=L,R} \eta_{ij}^{eq} (\bar{e}_i \gamma^{\mu} e_i) (\bar{q}_j \gamma_{\mu} q_j)
\eta_{ij}^{eq} \Rightarrow \text{Helicity and flavour structure } (\pm 4\pi/\Lambda^2)
```

• Λ has the range, 2.0to8.0 TeV from ZEUS and 1.6to5.5 TeV from H1 experiments, based on the analysis of 1994-2006 data

Soumitra Nandi EWNP LHeC (Divonne) - p.18/21

 Q^2 distribution of NC DIS in the model with large extra dimension

ZEUS data compared with 95% CL exclusion limits for the effective Planck mass scale in models with large extra dimensions

Soumitra Nandi

EWNP LHeC

(Divonne)

Thank you!

Soumitra Nandi EWNP LHeC

DIS cross section

DIS cross sections,

$$\sigma_{NC(CC)} = \sigma_{NC(CC)}^{Born} (1 + \delta_{NC(CC)}^{qed}) (1 + \delta_{NC(CC)}^{weak})$$

 $\sigma_{NC(CC)}^{Born} \Rightarrow$ Born cross section

Radiative corrections: $\delta^{qed}_{NC(CC)} \Rightarrow \mathsf{QED} \quad \delta^{weak}_{NC(CC)} \Rightarrow \mathsf{weak}$

The NC cross section:

$$\frac{\mathrm{d}^2 \sigma_{NC}^{\pm}}{\mathrm{d}x \; \mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_{+} \tilde{F}_2 \mp Y_{-} x \tilde{F}_3 - y^2 \tilde{F}_L \right] \left(1 + \delta_{NC}^{weak} \right) \; \; \text{where} \; \;$$

$$\tilde{F}_2 \equiv F_2 - v_e \frac{\kappa_w Q^2}{(Q^2 + M_Z^2)} F_2^{\gamma Z} + (v_e^2 + a_e^2) \left(\frac{\kappa_w Q^2}{Q^2 + M_Z^2}\right)^2 F_2^Z$$

$$x\tilde{F}_3 \equiv -a_e \frac{\kappa_w Q^2}{(Q^2 + M_Z^2)} x F_3^{\gamma Z} + (2v_e a_e) \left(\frac{\kappa_w Q^2}{Q^2 + M_Z^2}\right)^2 x F_3^Z$$

$$\kappa_w^{-1} = 4 \frac{M_W^2}{M_Z^2} (1 - \frac{M_W^2}{M_Z^2})$$