Status of the LHeC Facility Plans

Bernhard Holzer, CERN for the LHeC study group IRF

Goal of the Workshop:

identify topics & problems related to the layout of the LHeC & the design of its critical components

with special emphasis on the layout of the interaction region and the RR design

* beam optics,
* beam separation,
* crossing angle required
* detector opening angle ... 1° / 10°

discuss present status of the required technical components

* crab cavities
* exotic magnets (sc half magnets, open magnets etc)
* double magnets for fast beam separation
* the electron-ring & its bypass system

and identify names ... in view of the CDR

Goal: Technical Design of the two LHeC Alternatives RR / RL for a CDR within a Year

Status Divonne 2008:

General Statement: Whatever we do ... the fundamental layout of the LHC delivers an enormous potential for e/p Luminosity

2808 bunches7 TeV $<math>\rightarrow \varepsilon_n = 3.75 \ \mu m$ RR Option / RL Option

LHeC Ring-Ring: basic parameters

Standard	Protons	Electrons
Parameters	Np=1.15*10 ¹¹	Ne=1.4*10 ¹⁰
	Ep=7 TeV	Ee=70 GeV
	<i>nb=2808</i>	nb=2808
	Ip=582mA	Ie=71mA
Optics	$\beta_{xp}=180cm$	$\beta_{xe}=12.7cm$
	$\beta_{yp} = 50 cm$	$\beta_{ye}=7.1cm$
	$\varepsilon_{xp}=0.5nm \ rad$	ε_{xe} =7.6nm rad
	ε_{yp} =0.5nm rad	ε_{ye} =3.8nm rad
Beam size	$\sigma_{xp}=30 \ \mu m$	$\sigma_{xe}=30\mu m$
	σ_{yp} =15.8 μm	<u>σ_{ye}=15.8μm</u>
Luminosity	8.2*10 32	$2 \text{ cm}^{-2} \text{ s}^{-1}$

e storage ring on top of LHC

Optics Design: Proton Ring (Status 2008)

Optics Design: Electron Ring (Status 2008)

Design Constraints

- Matched beam sizes at the IP required for stable operation.
- Tolerable beam-beam tune shift parameters ... for both beams
- Choose parameters close to LEP design and optimise the lattice for one ep Interaction region

	LEP	LHeC
cell length	79m	59.25m
phase advance	60/90/108 °	72 °
number of cells	<i>290</i>	<i>384</i>

Electron Ring: Optical functions in IR 8

Use a triplet focusing (βx = 7.1 cm, βy =12.7cm)
Triplet is displaced to allow for a quick beam separation --> additional dispersion created close to IP

Overview of Parameters (2008)

Lepton Ring Parameters			
Parameter	Unit	Value	
Circumference	m	26658.872	
Beam Energy E _e	GeV	70	
Arc Focusing		FODO	
Cell Length lcell	m	59.25	
Bending Radius	m	3060.213	
Hor. / Vert. Betatron Phase Advance per Cell	degree	72 / 72	
Number of FODO Cells in the Arc Ncell		384	
Arc Chromaticity (hor./ver.)		-91.44/-93.36	
Momentum Compaction Factor c		1.28 · 10-4	
Horizontal Beam Emittance x (no RF frequency shift)	nm 🤇	22	
Particle Radiation Energy Loss per Turn	MeV/Turn	686	
Hor. / vert. Beta Function at IP	т	12.7 cm / 7.1 cm	

A.Kling --> J. Jowett

Layout IR 1 & 5

to do list: establish optics for the bypass lines & include them into the overall e-ring lattice --> H. Burkhardt, M. Fitterer (PhD)

Interaction Region Design IR 8:

layout dominated by the separation scheme

in

spectrometer effect: use dipole fields to separate the beams according to their momentum. ... don't loose too much space: \rightarrow quadrupole triplett of centre

LHC bunch distance:	25 ns	
1st parasitic crossing:	3.75m	
first e-quad positioned at	1.2m	
too far for sufficient beam separation		

- --> support the off-centre-quadrupole separation scheme by crossing angle (≈ 1.5 mrad) at the IP.
- -->... and the Luminosity Calorimeter ??

IR Design: Synchrotron Radiation

overall radiation power in IR: 60 kW (HERA II: 30 kW) geometry of detector beam pipe and synchrotron radiation masks ?

Performance Limitations Ring-Ring

Tuneshift Limit

Luminosity safely 10³³cm⁻²s⁻¹

LHC upgrade: N_p increased. Need to keep e tune shift low: by optimising $\beta \& \varepsilon$ (but keep e and p matched).

LHeC profits from LHC upgrade but not proportional to N_p

Tuneshift Limit:

$$\Delta \boldsymbol{\nu}_{xe} = \frac{\boldsymbol{\beta}_{xe} \boldsymbol{r}_{e}}{2\pi \, \boldsymbol{\gamma}_{e}} * \frac{N_{p}}{\boldsymbol{\sigma}_{xp} (\boldsymbol{\sigma}_{xp} + \boldsymbol{\sigma}_{yp})}$$

Experience:

LEP LHC-B	$\Delta v_e = 0.048$ $\Delta v_p = 0.0037$
HERA	$\Delta v_e = 0.051$ $\Delta v_n = 0.0022$

Standard	Protons	Electrons	
Parameter			
	Np=1.15*10 ¹¹	Ne=1.4*10 ¹⁰	nb=2808
	Ip=582 mA	Ie=71mA	
Optics	$\beta xp = 180 \ cm$	βxe=12.7 cm	
	$\beta yp = 50 \ cm$	$\beta ye = 7.1 \ cm$	
	exp=0.5 nm rad	Exe=7.6 nm rad	
	εур=0.5 nm rad	Eye=3.8 nm rad	
Beamsize	<i>σx=30 μm</i>	σx=30 μm	
	$\sigma y=15.8 \ \mu m$	<i>σy=15.8 μm</i>	
Tuneshift	$\Delta vx = 0.00055$	$\Delta vx = 0.0484$	
	<i>∆vy</i> =0.00029	<i>∆vy=0.0510</i>	
Luminosity	$L=8.5*10^{32}$		

Ultimate	Protons	Electrons	
Parameter			
	$Np=1.7*10^{11}$	Ne=1.4*10 ¹⁰	nb=2808
	Ip=860mA	Ie=71mA	
Optics	βxp=230 cm	βxe=12.7 cm	
	$\beta yp = 60 \ cm$	$\beta ye = 7.1 \ cm$	
	exp=0.5 nm rad	Exe=9 nm rad	
	εур=0.5 nm rad	εye=4 nm rad	
Beamsize	$\sigma x=34 \ \mu m$		
	$\sigma y=17 \ \mu m$		
Tuneshift	$\Delta vx = 0.00061$	$\Delta vx = 0.056$	
	<i>∆vy=0.00032</i>	∆vy=0.062	
Luminosity	$L=1.03*10^{33}$		

Upgrade	Protons	Electrons	
Parameter			
	$Np=5*10^{11}$	Ne=1.4*10 ¹⁰	nb=1404
	Ip=1265mA	Ie=71mA	
Optik	βxp=400 cm	$\beta xe = 8 \ cm$	
	<i>βур=150 cm</i>	$\beta ye = 5 \ cm$	
	exp=0.5 nm rad	Exe=25 nm rad	
	εyp=0.5 nm rad	εye=15 nm rad	
Beamsize	$\sigma x = 44 \ \mu m$		
	$\sigma y=27 \ \mu m$		
Tuneshift	$\Delta vx = 0.0011$	$\Delta vx = 0.057$	
	4vy=0.00069	4vy=0.058	
Luminosity	$L=1.5*10^{33}$		

Luminosity Ring Ring & Performance Limit

Design values limited by 50 MW available rf power --> $E_e \approx 70$ GeV.

Luminosity Performance Limit: E_e, I_e due to Synchrotron Radiation

$$\boldsymbol{P}_{\gamma} = \frac{\boldsymbol{e}^{2}\boldsymbol{c}}{6\pi \boldsymbol{\varepsilon}_{0}} * \gamma^{4} * \boldsymbol{r}^{2} * \boldsymbol{N}_{e}$$

10³³ can be reached in RR

 $\begin{array}{rcl} E_e = 50 \; GeV & \leftrightarrow & P_{syn} = 10MW \\ E_e = 75 \; GeV & \leftrightarrow & P_{syn} = 50MW & \ast 2 \end{array}$

klystron efficiency: 50%

Overall power consumption: limited to 100MW

Luminosity Linac Ring: Performance Limit

 $L = \frac{N_p \gamma}{4\pi \varepsilon_{pn} \beta^*} * \frac{P_{total}}{E_e}$

M.Tigner, B.Wiik, F.Willeke, Acc.Conf, SanFr.(1991) 2910

Luminosity Performance Limit: beam power

adequate for high beam energy

--> see talk by Frank

Performance Limits: the 1° problem

Luminosity vs. Acceptance

□ □ Luminosity and acceptance very much depend on physics program (to be defined during this workshop)

=> Possible scenario two different interaction region setups

 $\Box \Box L = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}, \ 10^{\circ} < \theta < 170^{\circ} \text{ (prefer magnets not in front of calorimeter)}$ $\Box \Box L = 10^{31} \text{ cm}^{-2} \text{ s}^{-1}, \ 1^{\circ} < \theta < 179^{\circ}$

the good news: Cockcroft will contribute to that workpackage (Rob Appleby et al)

Electron-nucleus (e-A) collisions

- The LHC will operate as a nucleus-nucleus (initially Pb-Pb) collider
 - Physics programme is expected to include:
 - Pb-Pb at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$
 - p-Pb
 - A-A where A may be Ca, O, ...
- Natural possibility of colliding electrons with ²⁰⁸Pb⁸²⁺ nuclei
 - Requires maintenance of LHC ion injector complex (source-LINAC3-LEIR) through to the time of operation of LHeC
 - Also requires inclusion of ion capability in new generation of injector synchrotrons (PS \rightarrow PS2, SPS \rightarrow SPS2 ??)
- Electron-deuteron e-d collisions would require a completely new source (at least!)
 - Present CERN complex does not foresee deuterons

John Jowett

SUMMARY: To Do List (Status Divonne 2008)

- e-Ring: Design straight sections 1-7 : replace dummy straight sections by bypass regions (H. Burkhardt / M. Fitterer)
- Include **Rf sections** ... can be done in the by pass regions
 - Include sextupoles for correction of chromatic lattice functions.
- Optimise damping partition numbers ... not needed anymore (?)
- Optimise Phase Advance in the FoDo to reduce beam emittance. (goal = 7.6 nm !) (J. Jowett)
- compare the two schemes: linac-ring / ring-ring ... for a given overall wall plug power: 100MW (M. Klein)
- calculate the linear beam beam tune shift for both beams (B. Holzer)
- calculate the (long range) beam beam effect (W. Herr, T. Pieloni EPFL-)
- design for a 1° / 179° option --> Cockcroft (R. Appleby)
- synchrotron radiation & Luminosity Counter \rightarrow close collaboration with detector people
- → *R* & *D* on technical components ... exotic quads, crab cavities