Considerations for the Ring-Ring option

- Introduction and baseline assumptions, relevant for the layout
- By-pass - principles
- Larger, fully de-coupled by-pass

Acknowledgements :

many discussions and input from my CERN colleagues and in particular
John Osborne, John Jowett, T. Linnecar, O. Brüning
$\mathrm{f}_{\mathrm{rev}}=11245.5 \mathrm{~Hz}$ given by LHC circumference \#bun $=2800$
high collision frequency $f=$ \#bun \times frev $=31.5 \mathrm{MHz}$ and high beam current
beam current $I=n e f$

$$
\mathrm{e}=1.60218 \times 10^{-19} \mathrm{As}
$$

Ring : loss in SynRad $\mathbf{U}_{\mathbf{0}}=\mathbf{C}_{\boldsymbol{\gamma}} \mathbf{E}_{\mathrm{b}}{ }^{4} / \boldsymbol{\rho} \quad \boldsymbol{\rho}=2997 \mathrm{~m} \quad$ LEP had $\boldsymbol{\rho}_{\text {eff }}=3026.42 \mathrm{~m}$

$$
E_{c}=\frac{3}{2} \frac{\hbar c \gamma^{3}}{\rho}=2.96 \times 10^{-7} \mathrm{eVm} \frac{\gamma^{3}}{\rho}
$$

machine	N / bun	\#bun	Ntot / beam	I beam	$\begin{gathered} \mathbf{E}_{\mathrm{b}} \\ {[\mathrm{GeV}]} \\ \mathbf{V}[\mathbf{G V}] \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{arc}}= \\ \mathbf{V ~ I} \\ {[\mathbf{M W}]} \end{gathered}$	$\begin{gathered} \mathbf{U}_{0} \\ {[\mathbf{G e V}]} \end{gathered}$	$\begin{gathered} \text { Psyn } \\ {[\mathbf{M W}]} \end{gathered}$	γ	\mathbf{E}_{c} [keV]
Baseline LHeC	$1.40 \mathrm{E}+10$	2800	3.92E+13	70.63 mA	50	3531	0.184	13.0	97847	91.6
Ultimate LHeC					70	4944	0.7087	50.05	136987	251.4
LEP 2	4.16E+11	4	$1.67 \mathrm{E}+12$	$\begin{gathered} 4 \times 0.75 \\ \mathrm{~mA} \end{gathered}$	100	300	2.923	8.77	195694	733

By-pass for large experiments

schematic layout Dainton / Willeke et al.

Option without extra bends 0 -th iteration MAD-X lattice layout : $\Delta=10 \mathrm{~m}$ bypass.

Advantage : no extra power / radiation, rather long, already about a 1 km ! for only 10 m separation

Bypass with few extra bends

Separation

1 inverted LEP cell (79 m) + straight + 1 normal bend cell

Per bypass 4 extra LEP cells.
Modest $4 / 244=1.6 \%$ increase in cells and energy loss.

Starting bypass with QL18.L5
Total bypass length 880 m .
Full 13.35 m separation
29.5 m straight part at IP5.
β-functions well behaved with extra quad in inserted straights

Potential to further optimise - using full bends instead of 10% bends at the arc ends.

Then full match including dispersion.

By-pass for IR1 and IR5

LHeO

UPS 54 Survey Gallery

Looks OK

Now let us take a look close to CMS

LHeC

LHeC

Maybe we should also consider alternatives.

Idea :

consider a much larger by-pass which completely decouples the electron tunnel from the large experiments.

Profit from the extra space to put extra equipment needed only for electrons :

- Injection
- RF

Larger "de-coupled" by-passes

from J.A. Osborne

RF requirements for 70 GeV . 1st estimate by Trevor Linnecar 10/2008:
in total about
$540 \mathbf{m}$ for klystron gallery
150 m beam-line with RF, spread out over $\sim 540 \mathrm{~m}$ to match klystron gallery
best : symmetrically distributed in $\mathbf{4}$ by-pass pieces, or $4 \times 135 \mathrm{~m}$ RF-sections

Tunnel sizes:
Beam tunnel same size as LHC tunnel.
Klystron gallery of $\boldsymbol{\sim} \mathbf{5} \mathbf{~ m}$ diameter, separated by $\mathbf{8} \mathbf{~ m}$ from beam tunnel, with holes to beam tunnel to take waveguides.

About 100 cavities, group 2 or 4 waveguides : 25 - 50 holes for waveguides

Not enough to reserve the space.
The significant Energy loss requires that the e-ring RF is in stalled in regions with negligible Dispersion !

LEP lengths

79 m long cells ; bending angle of half cell 11.30640 mrad
from $3 \times 11.55 \mathrm{~m}$ long dipoles
dipole bending radius $\varrho=3096.175 \mathrm{~m}$
31 cells per octant; in total $\mathbf{8} \times \mathbf{3 1}=\mathbf{2 4 4}$ cells
LEP DS : from start of QL18 440.8 m from IP to to start of QS11 245.6 m from IP 194.85 m 5 half cells

No more need for DS at IR.
Instead DS around RF sections
Preliminary length estimates
Arc end at LEP QF29 $\sim 875 \mathrm{~m}$ from the IP,
$\sim \mathbf{3 0 0} \mathrm{m}$ for $\mathrm{DS}+\mathrm{RF}+\mathbf{5 7 5} \mathbf{~ m}$ arc piece to "IP"
To be confirmed by : full lattice design - part of PhD thesis - starting soon

Keep equal circumference for the p and e rings.
Increase of the e-ring length by the by-passes.
By-passes, 46 m separation for ATLAS / IP1 and 29 m for CMS / IP5 Length increase
$2 \times\left(\sqrt{46 m^{\wedge} 2+875 m^{\wedge} 2}-875 m\right)+$
$2 \times\left(\sqrt{29 m^{\wedge} 2+875 m^{\wedge} 2}-875 m\right)$
$=2 \times 1.2 \mathrm{~m}+2 \times 0.48 \mathrm{~m}=3.4 \mathrm{~m}$
Compensate by a decrease in radius of $3.4 \mathrm{~m} / 2 \pi=0.54 \mathrm{~m}$
Symmetric case: $2 \times 1.2 \mathrm{~m}=4.8 \mathrm{~m} \quad 4.8 \mathrm{~m} / 2 \pi=0.63 \mathrm{~m}$

Layout

Layout, with larger, fully de-coupled by-passes

Layout, with larger, fully de-coupled by-passes

Backup Slides

20 GeV or more like for LEP would be generous
Minimal injection energy : LEP was TMCI limited - here much less of an issue due to $10 \times$ reduced bunch intensities. Multi-bunch instab. feedback.
Careful - make sure bunches no too short at injection and transverse impedance increase be smaller beam pipes than in LEP
Reasonable lower limit ~ 10 GeV (?)

Be able to fill reasonably fast - say within 10 min low intensity 1.4×10^{10} / bunch - could do without accumulation many (2800) bunches, 25 ns spacing, total intensity 3.92×10^{13} electrons
injection scheduling :
analog to protons (3-4 batches of nominally 72 bunches)
e+ and e- : no principle problem - needs extra e+ source and possibility to change polarities

Beam lifetime from ep collisions

ep cross section, leading to electron loss $\boldsymbol{\sim} 0.25$ barn, mostly by Bremsstrahlung
lifetime, for single IP at 70 GeV with design parameters
Loss $=3.071 \mathrm{e}+08$ Part/sec coll. lifetimes $\mathrm{e}=35.55 \mathrm{~h} p=431.7 \mathrm{~h}$

```
Part e+ P= 70 GeV, gamma= 136987, Ne = 1.4e10 / bunch
Part p P= 7 TeV, gamma=7460.52, Np = 1.7e11 / bunch (ultimate intensity)
Lumi = 1.2140e+33 cm**-2 sec**-1
```

$\mathrm{Ee}[\mathrm{GeV}]$	$\xi_{x e}$	$\xi_{y e}$	$\xi_{x p}$	$\xi_{y p}$
70 GeV	0.05042	0.05349	0.0005592	0.0002938

