Beta-beam design status and technical challenges ahead

Elena Wildner, CERN

European Strategy for Future Neutrino Physics, CERN 1-3 Oct 2009

Outline

- Beta Beam Concepts
- A Beta Beam Scenario
- Ion Production
- Other Challenges
- Other Beta Beam Scenarios
- Summary

Beta-beams, recall

Aim: production of (anti-)neutrino beams from the beta decay of radioactive ions circulating in a storage ring

 Similar concept to the neutrino factory, but parent particle is a beta-active isotope instead of a muon.

Beta-decay at rest

- v–spectrum well known from the electron spectrum
- Reaction energy Q typically of a few MeV
- Accelerate parent ion to relativistic γ_{max}
 - Boosted neutrino energy spectrum: E_ν ≤ 2γQ
 - Forward focusing of neutrinos: $\theta \le 1/\gamma$

- Depending on β^+ or β^- decay we get a neutrino or anti-neutrino
- Two different parent ions for neutrino and anti-neutrino beams
- Physics applications of a beta-beam
 - Primarily neutrino oscillation physics and CP-violation (high energy)
 - Cross-sections of neutrino-nucleus interaction (low energy)

Choice of radioactive ion species

- Beta-active isotopes
 - Production rates
 - Life time
 - Dangerous rest products
 - Reactivity (Noble gases are good)
- Reasonable lifetime at rest
 - If too short: decay during acceleration
 - If too long: low neutrino production
 - Optimum life time given by acceleration scenario
 - In the order of a second
- Low Z preferred
 - Minimize ratio of accelerated mass/charges per neutrino produced
 - One ion produces one neutrino.
 - Reduce space charge problems

Some scaling

- Accelerators can accelerate ions up to Z/A × the proton energy.
- $L \sim \langle E_v \rangle / \Delta m^2 \sim \gamma Q$, Flux $\sim L^{-2} = \rangle$ Flux $\sim Q^{-2}$
- Cross section ~ <E_ν > ~ γQ
- Merit factor for an experiment at the atmospheric oscillation maximum: $M = \gamma/Q$
- Decay ring length scales ~ γ (ion lifetime)

Beta beam to different baselines

Pilar Coloma Optimization of the Two-Baseline β-Beam

The EURISOL scenario^(*) boundaries

- Based on CERN boundaries
- Ion choice: ⁶He and ¹⁸Ne
- Based on existing technology and machines
 - Ion production through ISOL technique
 - Bunching and first acceleration: ECR, linac
 - Rapid cycling synchrotron
 - Use of existing machines: PS and SPS
- Relativistic gamma=100 for both ions
 - SPS allows maximum of 150 (⁶He) or 250 (¹⁸Ne)
 - Gamma choice optimized for physics reach
- Opportunity to share a Mton Water Cherenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory
- Achieve an annual neutrino rate of
 - 2.9*10¹⁸ anti-neutrinos from ⁶He
 - 1.1 10¹⁸ neutrinos from ¹⁸Ne

top-down approach

- The EURISOL scenario will serve as reference for further studies and developments: Within Eurov we study ⁸Li and ⁸B
- (*) FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395)

Intensity evolution during acceleration

Cycle optimized for neutrino rate towards the detector

30% of first ⁶He bunch injected are reaching decay ring Overall only 50% (⁶He) and 80% (¹⁸Ne) reach decay ring

Normalization
Single bunch intensity to maximum/bunch
Total intensity to total number accumulated in RCS

Radioprotection

Annual Effective Dose to the Reference Population (μSν)				
RCS	PS	SPS	DR	
0.67	0.64	-	5.6 (only decay losses)	

Stefania Trovati, Matteo Magistris, CERN

Yacin Kadi et al., CERN

Activation and coil damage in the PS

StrahlSim: Losses Beta Beams in EUR SOL

He-beam. Decay products tracked to the collimator and beampipe (red & black curves).

The coils could support 60 years operation with a EURISOL type beta-beam

Particle turnover in decay ring

- Momentum collimation (study ongoing):
 - ~5*10¹² ⁶He ions to be collimated per cycle
 - Decay: ~5*10¹² ⁶Li ions to be removed per cycle per meter
- Dump at the end of the straight section will receive 30kW
- Dipoles in collimation section receive between 1 and 10 kW (masks).

Duty factor and Cavities for He/Ne

10¹⁴ ions, 0.5% duty (supression) factor for background suppression !!!

20 bunches, 5.2 ns long, distance 23*4 nanosseconds filling 1/11 of the Decay Ring, repeated every 23 microseconds

Erk Jensen, CERN

- Not conclusive yet only first ideas more work is needed!
- The heavy transient beam loading is unprecedented.
- Since there is no net energy transfer to the beam, the problem might be solved using a linear phase modulation in the absence of the beam, mimicking detuning – this could reduce gap transients.
- A high Q cavity (S.C.?) would be preferable.

Open Midplane Dipole for Decay Ring

Cosθ design open midplane magnet

Manageable (7 T operational) with Nb -Ti at 1.9 K

Aluminum spacers possible on midplane to retain forces: gives transparency to the decay products

Special cooling and radiation dumps may be needed inside yoke.

J. Bruer, E. Todesco, E. Wildner, CERN

Open mid-plane Quadrupole

Acknowledgments (magnet design): F Borgnolutti, E. Todesco (CERN)

Options for production

- ISOL method at 1-2 GeV (200 kW)
 - 2 10¹³ ⁶He per second
 - <8 10¹¹ ¹⁸Ne per second
 - Studied within EURISOL
- Direct production
 - >1 10¹³ (?) ⁶He per second
 - 1 10¹³ ¹⁸Ne per second
 - Studied at LLN, Soreq, WI and GANIL
- Production ring

See talks by T. Stora and S. Mitrofanov

He $2.9 \ 10^{18} \ (2.0 \ 10^{13}/s)$

Ne 1.1 10^{18} (2.0 10^{13} /s)

Aimed:

- 10¹⁴ (?) ⁸Li per second
 - >10¹³ (?) ⁸B per Difficult Chemistry
- Studied Within EUROv

N.B. Nuclear Physics has limited interest in those elements => Production rates not pushed! Try to get ressources to persue ideas how to produce Ne!

New approaches for ion production

"Beam cooling with ionisation losses" – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

"Development of FFAG accelerators and their applications for intense secondary particle production", Y. Mori, NIM A562(2006)591

(*) FP7 "Design Studies" (Research Infrastructures) EUROnu (Grant agreement no.: 212372)

Beta Beam scenario EUROnu, FP7

Detector Gran Sasso (~ 5 times higher Q)

The beta-beam in EURONU DS (I)

- The study will focus on production issues for 8Li and 8B
 - B is highly reactive and has never been produced as an ISOL beam
 - Production ring: enhanced direct production
 - Ring lattice design (CERN)
 - Ionization Cooling (CERN +)
 - Collection of the produced ions, release efficiencies and cross sections for the reactions (UCL, INFN, ANL)
 - Sources ECR (LPSC, GHMFL)
 - Supersonic Gas injector (PPPL + ?)

CERN Complex

- All machines to be simulated with B and Li (CERN, CEA)
- PS2 presently under design (requirements for beta beams)
- Multiple Charge State Linacs (P Ostroumov, ANL)

Associated partners in EURONU DS

3-Flavor Oscillation needs two significantly different baselines to disentangle CP and matter effects

Possible realization with one detector only (price)

 v_{μ} -beam:

SPL: $\langle E_{\nu} \rangle = 260 \text{ MeV}$ $L_{opt} = 134 \text{ km}$

CERN - Frejus: 130 km

 v_e -beam:

 $\gamma = 100 \text{ Lopt} = 130 \text{ km}$ $\gamma = 500 \text{ Lopt} = 1000 \text{ km}$

CERN – Frejus: 130 km DESY – Frejus: 960 km

The production Ring: Ion Source for Beta Beams

- 12m circumference
- mirror symmetrical structure
- 1.5T dipoles
- 5 quadrupole-families
- Dx = 0 in cavity-section
- best choice of Dx in target-section depends on wedge angle of the target

Michaela Schaumann, Aachen/CERN, 2009 Jakob Wehner, Aachen/CERN, 2009 Elena Benedetto, CERN, 2009 See Poster session

02/10/09

The production ring cooling: review

Mini-workshop on cooling at Fermilab summer 2009
(David Neuffer)

joining teams from CERN and Fermilab

Challenge: collection device

- A large proportion of beam particles (⁶Li) will be scattered into the collection device.
- Production of 8I i and 8B: ⁷Li(d,p) ⁸Li and ⁶Li(³He,n) ⁸B reactions using low energy and low intensity ~ 1nA beams of ⁶Li(4-15 MeV) and ⁷Li(10-25 MeV) hitting the deuteron or ³He target.

- Semen Mitrofanov (See next talk)
- Thierry Delbar
- Marc Loiselet

Laboratori Nazionali di Legnaro

M.Mezzetto (INFN-Pd)

on behalf of

INFN-LNL: M. Cinausero, G. De Angelis, G. Prete

First Experiment performed in July 2008

Inverse kinematic reaction:

⁷Li + CD₂ target E=25 MeV

Data reduction in progress

Future: reduce contamination

European Strategy for Future Neutrino Physics, Elena Wildner

ECR 60 GHz Source

7 T 4.6 T 3.5 T

T(C)

119

44

70

44

83

62

62

419

2.1 T ECR zone

Courtesy: Thierry Lamy, LPSC

- Source Assembly for October 2009
 - Magnet field measurements at half intensity
- Tests of source at 28 GHz expected in 2010
- Scientific collaboration
 - ISTC (IAP NN, LPSC, LNCMI, CERN, Istituto di Fisica del Plasma)
 - 490 k€ EU + 225 k€ LPSC
 - Gyrotron manufacturing, 60 GHz plasma and beams developments

Associates

- Weizmann Institue of Science, Revohot
 - Michael Hass
 - Partners: GANIL and Soreq
 - Collaboration with Aachen (exchange of students)

Work Focus

- produce light radioactive isotopes also for beta beams
- secondary neutrons from an intense, 40 MeV d beam (6He and 8Li) and direct production with 3He or 4He beams (18Ne).
- Use of superconducting LINACs such as SARAF at Soreq (Israel) and the driver for SPIRAL-II (GANIL).

Added Value

To produce strong beta beam ion candidates or production methods not in EUROnu

Courtesy Micha Hass

Relaxed Duty Factors for more neutrinos

0.5% duty factor for background suppression could be relaxed for higher neutrino energies.

But not enough to profit of Barrier Buckets for B and Li! We need in addition more flux for high-Q ions.

Christian Hansen
Enrique Fernandez-Martinez
See Poster session

High γ and decay-ring size, ⁶He

Gamma	Rigidity	Ring length	Dipole Field
	[Tm]	<u>T=5 T</u>	<u>rho=300 m</u>
		<u>f=0.36</u>	Length=6885m
100	938	4916	3.1
150	1404	6421	4.7
200	1867	7917	6.2
350	3277	12474	10.9
500	4678	17000	15.6

Magnet R&D

Example: Neutrino oscillation physics with a higher γ β -beam, arXiv:hep-ph/0312068 J. Burguet-Castell, D. Casper, J.J. Gomez-Cadenas, P.Hernandez, F.Sanchez

Beta Beams at Fermilab

Jansson, Mena, Parke & Saoulidou hep-ph/0711107

Combining CPT-conjugate neutrino channels at the same E/L to determine only the neutrino mass hierarchy

$$P(\nu_{\mu} \rightarrow \nu_{e}) > P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu})$$
 for Normal Hierarchy
and $P(\nu_{\mu} \rightarrow \nu_{e}) < P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu})$ for Inverted Hierarchy,

The neutrino channel, nu_mu -> nu_e, would use the existing NuMI beamline Whereas the anti-neutrino channel, nubar_e -> nubar_mu, would come from 6He or 8Li Beta beams

For 6He the Tevatron (1 TeV) gives a gamma=350 and one can use the NOvA detector (810 km)

Whereas for 8Li the Main Injector (120 GeV) is used for a gamma=55 and baseline needs to be 300 km (new detector)

Optimized Two-Baseline Beta Beam

Courtesy: Sandhya Choubey

- Beams from He/Ne with $\gamma = 350$ sent to a 500 kton WC detector at L = 650 km (CERN-Canfranc) for 2.5 years each
- Beams from Li/B sent to a 50 kton iron calorimeter at L = 7000 km (CERN-INO) for 2.5 years each
- The magic baseline option requires a storage ring with dip angle 34°; that is a challenge for a very large storage ring

Choubey, Coloma, Donini, Fernandez-Martinez (2009)

Outperforms the Neutrino Factory for $\sin^2 2\theta_{13} \gtrsim 10^{-3}$

Low energy Beta Beams

Christina Volpe:

A proposal to establish a facility for the production of intense and pure low energy neutrino beams (100 MeV). J Phys G 30 (2004) L1.

PHYSICS POTENTIAL

- v-nucleus cross sections
 (detector's response,
 r-process, 2β-decay)
- fundamental interactions studies (Weinberg angle, CVC test, μ_{ν})
 - astrophysical applications

PHYSICS STUDIED WITHIN THE EURISOL (FP6, 2005-2009)

The virtues of combining energies from BB and EC

• Sensitivity to θ_{13} and δ (CERN to Gran Sasso or Canfranc)

$$^{156}Yb$$
 Long lifetime, difficult to make, space charge?

J. Bernabeu, C. Espinosa, C. Orme, S. Palomares-Ruiz and S. Pascoli based on JHEP 0906:040, 2009

Summary (i)

- The EURISOL beta-beam conceptual design report will be presented during 2009 (⁶He and ¹⁸Ne, gamma 100)
 - First coherent study of a beta-beam facility
 - Top down approach
 - 18Ne shortfall as of today
 - Duty Factors are challenging:

Collimation and RF in Decay Ring

Summary (ii)

- A beta-beam facility using ⁸Li and ⁸B (EUROnu) (gamma 100)
 - Experience from EURISOL
 - Production issues (pay attention to 18Ne)
 - Optimize chain
 - Revisit Duty Factors, RF and bunch structures
 - Acceptance of PS2
 - (Complete) simulation of beta beam complex
 - Costing
 - First results will come from Euronu DS (2008-2012)

Acknowledgements

FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395) and FP7 "Design Studies" (Research Infrastructures) EUROnu (Grant agreement no.: 212372)

Particular thanks to

M. Benedikt, FP6 Leader

A Fabich,

S. Hancock

M. Mezetto

. . .

and all contributing institutes and collaborators