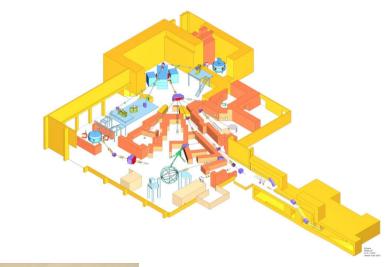


Collection device for the production of Li-8 and B-8 radioactive ions

Semen Mitrofanov Marc Loiselet Thierry Delbar

Université catholique de Louvain Centre de Recherches du Cyclotron Louvain-la-Neuve



Centre de recherches du Cyclotron Université Catholique de Louvain

LLN RIB typical intensities **after** post-acceleration **and** isobaric separation on experimenter's target.

Noble gases or extraction as molecules

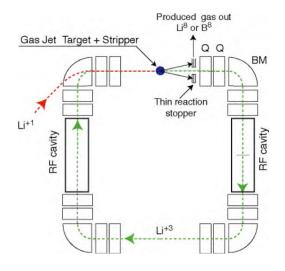
			[MeV]	[pps]*
6Helium	0.8s	1+	5.3 – 18	1·10 ⁷
		2+	30 - 73	3.105
⁷ Beryllium	53 days	1+	5.3 - 12.9	2.107
		2+	25 - 62	4.106
¹⁰ Carbon	19.3s	1+	5.6 - 11	2.105
		2+	24 - 44	1 104
11Carbon	20 min	1+	6.2 - 10	1-107
¹³ Nitrogen	10 min	1+	7.3-8.5	4.108
		2+	11 - 34	3-108
		3+	45 – 70	1-108
15Oxygen	2 min	2+	10 – 29	6-107
18Fluorine	110 min	2+	11 – 24	5.106
¹⁸ Neon	1.7 s	2+	11 – 24	1-107
		3+	24 - 33, 45 - 55	4-106
¹⁹ Neon	17 s	2+	11 –23	2·109
		2+	7.5 - 9.5	5·109 (CYC44)
		3+	23 - 35, 45 - 50	1.5-109
		4+	60 - 93	8-108
35Argon	1.8s	3+	20 - 28	2.106
		5+	50 - 79	1-105

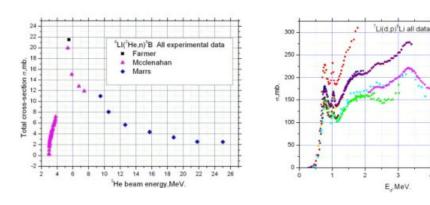
Energy Range

Step by step: from Eurisol DS to Euro V

- alternative way of to produce neon-18:
 ¹⁹F (p, 2n) ¹⁸Ne and ¹⁶O(³He,n)¹⁸Ne
- alternative particles: from ¹⁸Ne and ⁶He to ⁸Li and ⁸B

Advantage of ⁸Li and ⁸B: Q value is higher => V energy is higher



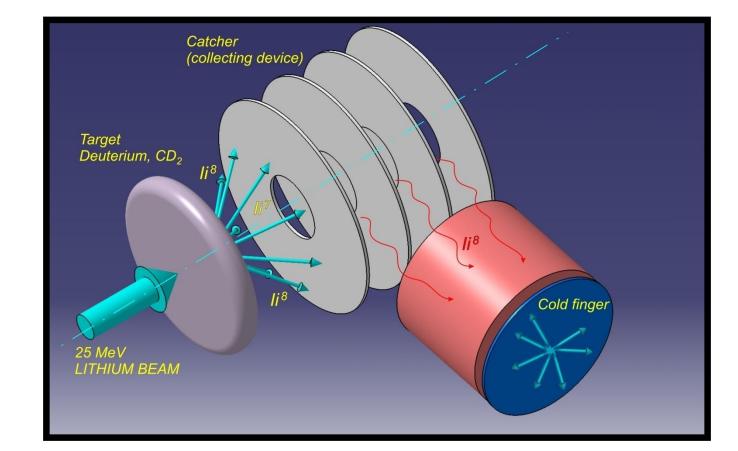


Main idea - "Beam cooling with ionisation losses" - C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475-487

⁷Li(d,p) ⁸Li and ⁶Li(³He,n) ⁸B

Collection device task:

- ✓ To build the prototype of the collection device and test it on-line.
- ✓ To measure the extraction efficiency for Li-8.
- √ To study extraction technique of B-8.



Collection device - what is it

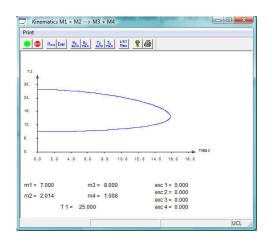
Scheme: beam->target->catcher->diffusion + effusion-> 8Li detection

R&D stages:

- produce 8Li in deuterium target
- stop and catch ⁸Li in stopper
- extract ⁸Li from the catcher
- detect and count β decay of ⁸Li

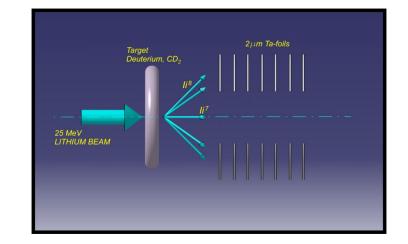
Main goal now is:

We should start from ⁸Li to make all tests and probe the whole system



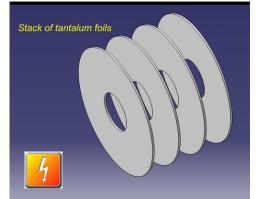
R&D stages:

- 1. The key points for 8Li production (our tests)
 - ⁷Li beam energy 10 ÷ 27 MeV
 - intensity 1 pnA
 - deuterium or CD₂ targets (0.2 mg/cm²)
 - kinematics => narrow output angular cone for the ⁸Li
 - 10^3 per 1 pnA

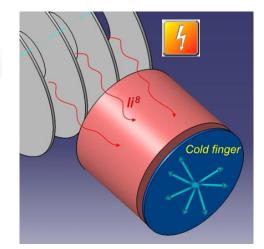


2. Stop and Catch

- tantalum foils with 2µm thickness
- toroidal geometry (future)

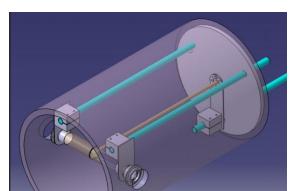


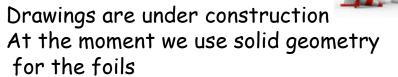
3.8Li extraction and effusing


• ohmic heating up to 2000°

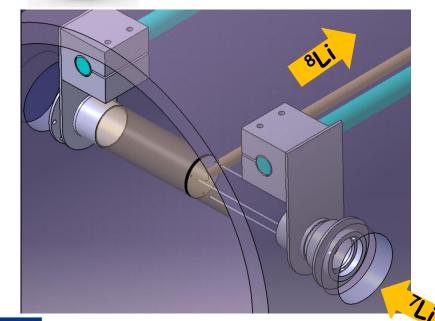
4. Detecting

- catch the ⁸Li on "cold finger"
- detect the B decay of ⁸Li using scintillators
- measuring ΔE , E, time structure, counting

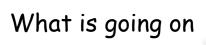




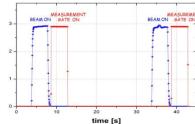
What we have today



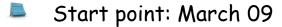
The main goal is to extract Li8 all works devoted to this (1st stage of our work).



- 1. Shopping material and electronics
- 2. Data acquisition system test
- 3. High temperature test
- 4. Preparation of on-line tests
- ullet testing the beam time structure (ON+OFF) ullet
- background measurements



Off-line tests



Time schedule - 8Li

Prototype design study: June 09 📜

Prototype technical drawings: July-October 09

Workshop manufacture: September-November 09

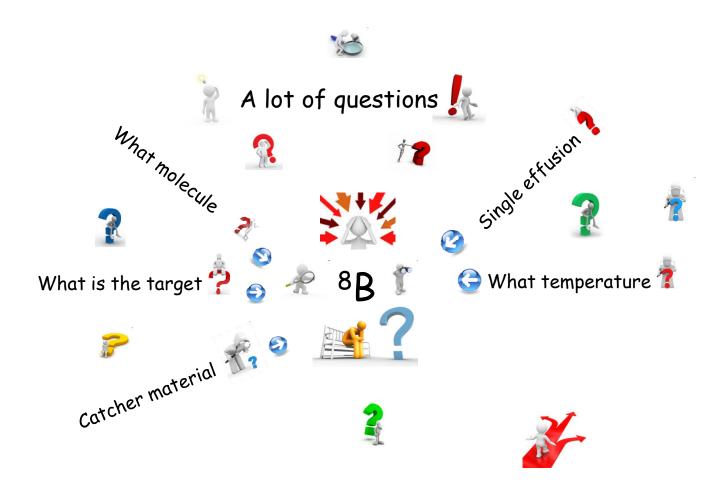
Off-line test: October + November 09

First beam test (beam test in cabin): December 09 🕍

Background measurements: February 10

Full-time beam experiments: March + April 10

⁸Li stage progress report: May ÷ July 10


End of the summer 2010 % we hope we will finish with 8 Li.

We have half of year to discover how to produce ⁸B beam via ISOL method and 1.5 year to develop the production technique

Thank You for Your attention

Collection device for the production of Li-8 and B-8 radioactive ions

Semen Mitrofanov Marc Loiselet Thierry Delbar

Université catholique de Louvain Centre de Recherches du Cyclotron Louvain-la-Neuve

