

S. Centro (ICARUS Collaboration)

Università di Padova / INFN Padova

European Strategy for Future Neutrino Physics CERN, 1-3 October 2009

Outline

- Charge signals from liquid Argon TPC
 - Characteristics and critical issues
 - A proven architecture
 - Toward updated schemes
- Light signals from liquid & gaseous Argon
 - Characteristics and critical issues
 - Basic DAQ architecture

The ICARUS-like read-out

The induction/collection signals

• ICARUS T600: three wire planes (pitch 3mm, separation 3mm)

 E_{drift} = 500 V/cm Mip signal ~ 12000 e⁻ (inc. recombinantion) Electron drift velocity ~ 1.5 mm/ μ s Typical grid transit time ~ 2-3 μ s

Induction signals require different treatment, but proper filtering makes the signal shape very much the same.

European Strategy for Future Neutrino Physics

Preamplifier for LAr TPC

- Need of very low noise amplifier:
 - No amplification around sense wires
 Collected charge ~ 10⁴ electrons/mip
 - Large input capacitance (C_D)
 - Wires (20 pF/m)* + cables (50 pF/m)
 - In T600 $C_D \sim 300-400 pF$
 - Serial noise (proportional to C_D)
 dominates over parallel noise
 (proportional only to signal bandwidth)
 - High trans-conductance (g_m) input devices are required to ensure acceptable Signal-to-Noise level (S/N ≥ 10)

$$e_{sn}^2 \propto \frac{1}{g_m}T$$

^{* 3}mm wire pitch

Choice of the active input device

- Bipolar transistors
 - $g_m \approx 400 \text{mS}$ @ $I_c \approx 10 \text{ mA}$ (Amplification merit factor $g_m \cdot Z_{out} \approx 10^5$)
 - BUT: parallel noise density ≈ 2 pA / √ Hz too high (with a typical LAr signal bandwidth of ~ 1 MHz gives unacceptable noise contribution)
- jFET
 - Good $g_m \approx 40$ mS @ $I_{ds} \approx 10$ mA (Amplif. **merit factor** $g_m \cdot Z_{out} \approx 10^4$)
 - negligible parallel noise density ≈ 0.001 pA / √ Hz
- VLSI-CMOS
 - Lower g_{m_i} (Amplif. merit factor $g_m \cdot Z_{out} \approx 10^3$)

jFET was the ICARUS choice : charge sensitive preamplifier with high g_m **2-jFET input** stage

The ICARUS T600 preamplifier

Custom IC in BiCMOS technology

- Classical unfolded cascode integrator
- External input stage jFET's
 - Two IF4500 (Interfet) or BF861/2/3 (Philips) in parallel to increase g_m (50-60 mS)
- External feedback network
 - Allow sensitivity and decay time optimization
 - High value f.b. resistor (100MΩ) reduce parallel noise

Two channels per IC

 symmetrical layout guarantees identical electrical behavior Two versions:

"quasi-current" mode: $R_fC_f \approx 1.6\mu s$ (collection + first induction)

"quasi-charge" mode: $R_fC_f \approx 30\mu s$ (mid induction)

Sensitivity \approx 6 mV/fC Dynamic range > 200 fC Linearity < 0.5% @ full scale Gain 6.5±.5 mV/fC, Gain uniformity < 3% E.N.C. \approx (350 + 2.5 x C_D) el \approx 1200 el. @ 400pF Power consumption \approx 40 mW 1LSB = 1 mV

Electronics in LAr?

Deeply investigated within ICARUS collaboration (since 1988)

- Limited choice of active devices working at LAr temperature
 - GAs-jFET (High Electron Mobility Transistor technology)
 - Silicon jFET (High Resistive Substrate technology)
 - CMOS very low temp. **now** available but...
 - Issues:
 - Better S/N due to improved g_m at cryogenic temperature
 - Reliability at LAr temperature
 - Availability on the market

The TOTEM architecture

- Charge Integrator made on Thick Film Hybrid technology with discrete jFET only
 - Minimum active and passive components
 - Ability to drive long transmission line
 - Reduced power consumption
 - Minimum cable connections
 - Current signal from Positive Power Supply
 - Common Negative polarization
- Characteristics
 - Optimized for low detector capacitance

Sensitivity ≈ 0.45 mV/fC (0.9 μ A/fC) Dynamic range ± 1.5 pC Linearity < 0.5% @ full scale Input impedance $\approx 420 \ \Omega$ Input capacitance ≈ 20 pF E.N.C. $\approx (390 + 7 \times C_D)$ el Power consumption ≈ 11 mW

$$V_0 = \frac{R_0}{R_L} * \frac{q_{in}}{C_F}$$

MicroBooNE: cryogenic front-end

Electronics chain

JFet discrete amplifier

Several years of experience in NA-34 & NA-48

CNRS/IN2P3/UCBL

Step 2) (2008) on the basis of the experience acquired during the first phase, new version (TOPEST) integrating also the shaper+buffer, 8 channels + single components for characterization.

Received at the end of July 2008. Tests at IPNL. Typical total gain 7.5 mV/fC,

40 mip dynamic range.

selectable:

feedback capacitance (500 fF-1 pf) feedback resistor (2 - 10 M Ω)

- selectable shaping times (0.5 4 µs range)
- power switching on-off

Step 3) (End 2008), detector tests 64 channels:

study noise vs track reconstruction as a function of angles and shaping times

Private communication:

 $g_{m} = 117 \text{ mS}$ $i_{d} = 8.655 \text{mA}$ $W_{tot} = 8100 \mu \text{W}$ $L = 0.35 \mu$

g = 10 (gates)

Noise=1000e @ Cd 250pF ??

Double phase Ar detectors

Double phase detectors enhance charge generated in liquid.

Similar signal shape

S/N intrinsically higher

Previous issues also apply

Pro & Contra cold amps

Advantages

- Reduction of input capacitance due to cable absence
- Reduction of micro-phonic noise (detector = Faraday cage)
- Improvement of S/N [~ 2.4] due the combined effect of lower [~1.9] Johnson noise and higher [~1.26] g_m @ 86°K

Disadvantages

- Inaccessibility during detector operation
- Need of careful selection of components, extensive burn-in and temperature cycles before installation to minimize components failure
- Design architecture and technology restricted by limited choice of active components
- Limit on power dissipation (< 100 mW/cm² to avoid LAr boil-off)

The ICARUS T600 experience

- Analogue front-end followed by a multiplexed ADC (1LSB≅1000e⁻) whose output is stored in RAM: waveform recorder.
- Digital VME module performs local storage, hit finding and facor 4 data compression (recent improvement).

T600 DAQ block diagram

The T600 DAQ system (5·10⁴ channels)
32 channels/board
576 channels/rack

Signals and noise in large TPC

- In a multi-kton TPC we can foresee wires with a pitch larger than the 3mm used in the T600
 - The adoption of 6mm pitch for a large TPC seems reasonable and
 - A realistic capacitance value for 10*m* electrode wires, 6*mm* pitch, and average 8*m* of cable is ~600*pF* (cfr.: 300-400*pF* in the T600)
- It follows that the Signal to Noise Ratio should be very similar to that of the T600.
 - Hence a completely new design of the analogue frontend would hardly improve the performance

AD conversion

- Serial ADC are now preferable over Flash ADC.
 - To reach the 3MHz sampling rate, AD must be clocked at 48MHz.
 - Mini Small Outline Package (MSOP) smaller than 5x5 mm². Many house 2 or even 4 channels. Competitive in price and power consumption.
- We can assume a resolution of 10bit but 12bit ADCs are also available at reasonable cost. More components available soon.

Available Serial ADC

	Manufacturer	Res	Part. Num.	Freq. <i>MHz</i>	Power mW typ.	Supply	Cost \$ 1000 pcs
•	Analog Devices	10	AD7273	3	11.4	2.35 – 3.6	3.75
	Analog Devices	10	AD7277	3	10.5	2.35 – 3.6	3.60
	Maxim	10	MAX1334	4.5	40	5, 3.3	NA
	Maxim	10	MAX1335	4	40	3.3	NA
	Analog Devices	12	AD7274	3	11.4	2.35 – 3.6	3.75
	Analog Devices	12	AD7276	3	10.5	2.35 – 3.6	4.0 – 6.25
	Linear Technology	12	LTC1403-1	2.8	14	2.7 – 3.3	4.00
	Maxim	12	MAX1332	3	38	5, 3.3	NA
	Linear Technology	14	LTC1403A-1	2.8	14	2.7 – 3.3	7.00
	Analog Devices	16	AD7621	3	86	2.5	29.95

The frequency given in the table refers to the sampling rate.

Compact architecture

576 channel module

New data distribution

- A set of a few FPGA for 576 channels (one flange) will be used to handle, filter, and organize the serial information provided by the serial ADC's.
- Assuming a sampling frequency of 1.5*Mhz*, 10*bit* ADC's we need to transmit ~8 G*bit*/s, (including error correction redundancy).
- Optical links with 1.5Gbit/s data rates are standards and can be driven by suitable interfaces available on FPGA from different vendors.
- Six optical links could serve all the channels of one module (576) and convey also extra information as absolute time.
- The architecture of the DAQ system can be enhanced through the adoption of a modern switched I/O allowing the parallelization of the serial data flows.

New electronics layout

- The whole electronics of ~600 channels can be hosted in a compact crate (~12 liter volume) incorporating the feed-through flange that forms a sort of backplane.
- External cables will be essentially eliminated.

Conclusions on charge read-out

- The ICARUS DAQ basic architecture is well suited even for larger size LAr-TPC (single phase);
- Similar structures adopted by other projects. Differences limited to the front-end choice: cold versus warm.
- Main upgrades concern:
 - More compact version of the front-end amplifier
 - Adoption of high frequency serial ADCs
 - Housing and integration electronics on detector
 - Optical links for Gbit/s transmission rate

Photo-detectors readout

Ionization in **liquid** Argon (LAr) is accompanied by **scintillation light emission**.

The two processes are **complementary** through recombination and their relative weight depends on the strength of **the electric field** and **dE/dx**.

Electron and photon yield similar ($Y_{ion} = \sim 2.9*10^4 \text{ e}^-\text{/MeV}$, $Y_{ph} = \sim 2.4*10^4 \text{ g}^-\text{/MeV}$ @ 500v/cm for *mip*).

Light is emitted at 128nm (detection generally through wave-shifting) with **two-component** exponential decay ($\tau_s \sim 6$ ns and $\tau_L \sim 1.5 \mu$ s).

Prompt light signal typically used for **trigger** (eg. lcarus) or for **calorimetry/particle identification** (eg. WArP).

Example of light coll. in WArP

mip: ~25% of light **short time** constant ~75% **long time** constant.

recoil: ~75% of light **short time** constant ~25% **long time** constant.

S2

- S1 primary scintillation.
- S2 scintillation in gas phase proportional to extracted ionization electrons.
- Ionization electrons identified individually.
- Efficient alternative to direct charge measurement for tiny signals (few electrons)
- S1 and S2 have similar characteristics.

European Strategy for Future Neutrino Physics

Conclusion

Waveform recording based on high performance (expensive) commercial solution (≥1GHz-≥8bit, multi buffering) is well suited for signals provided by PMTs in single and double phase Ar detectors, allowing full measurement of the signal structure.

Investment required:

for low cost waveform recorders for experiments requiring high number of channels; for **on line data reduction**, **signal recognition**, **and trigger pre-processing** through high speed FPGAs.

Also **onto detector integration** would be a benefit (see first part).