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Neutrinos:

Where We Are, Where We Want to Go, and Why?
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[Maltoni and Schwetz, arXiv: 0812.3161]

[Details in next three talks (Ranucci, Lasserre, Touramanis)]
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We often assume two-flavor mixing. Of course, there are three neutrinos. . .

Phenomenological Understanding of Neutrino Masses & Mixing
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Definition of neutrino mass eigenstates (who are ν1, ν2, ν3?):

• m2
1 < m2

2 ∆m2
13 < 0 – Inverted Mass Hierarchy

• m2
2 −m2

1 � |m2
3 −m2

1,2| ∆m2
13 > 0 – Normal Mass Hierarchy

tan2 θ12 ≡ |Ue2|
2

|Ue1|2 ; tan2 θ23 ≡ |Uµ3|2
|Uτ3|2 ; Ue3 ≡ sin θ13e

−iδ

[for a detailed discussion see AdG, Jenkins, arXiv:0804.3627]
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Three Flavor Mixing Hypothesis Fits All Data Really Well.

⇒ Good Measurements of Oscillation Observables

[1] Schwetz, Tortola and Valle, arXiv:0808.2016

[2] Gonzalez-Garcia and Maltoni, arXiv:0704.1800

[Maltoni and Schwetz, arXiv: 0812.3161]
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What We Know We Don’t Know (1): Missing Oscillation Parameters
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[Driving Force of Next-Generation Oscillation Program (see next three talks)]

• What is the νe component of ν3?
(θ13 6= 0?)

• Is CP-invariance violated in neutrino
oscillations? (δ 6= 0, π?)

• Is ν3 mostly νµ or ντ? (θ23 > π/4,
θ23 < π/4, or θ23 = π/4?)

• What is the neutrino mass hierarchy?
(∆m2

13 > 0?)

⇒ All of the above can “only” be

addressed with new neutrino

oscillation experiments

Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space)
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“Hint” for non-zero sin2 θ13? You decide. . . (see claim by Fogli et al., arXiv:0806.2649)

[Maltoni and Schwetz, arXiv: 0812.3161]
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The “Holy Graill” of Neutrino Oscillations – CP Violation

In the old Standard Model, there is only onea source of CP-invariance violation:

⇒ The complex phase in VCKM , the quark mixing matrix.

Indeed, as far as we have been able to test, all CP-invariance violating

phenomena agree with the CKM paradigm:

• εK ;

• ε′K ;

• sin 2β;

• etc.

Neutrino masses and lepton mixing provide strong reason to believe that other

sources of CP-invariance violation exist.

[for details on how we plan to do this, see talk by Schwetz-Mangold]

amodulo the QCD θ-parameter, which will be “willed away” as usual.
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What We Know We Don’t Know (2): How Light is the Lightest Neutrino?

(∆m2)sol

(∆m2)sol

(∆m2)atm

(∆m2)atm

νe

νµ

ντ

(m1)
2

(m2)
2

(m3)
2

(m1)
2

(m2)
2

(m3)
2

normal hierarchy inverted hierarchy

m2 = 0 ——————

——————↑
↓

m2
lightest = ?

So far, we’ve only been able to measure

neutrino mass-squared differences.

The lightest neutrino mass is only poorly

constrained: m2
lightest < 1 eV2

qualitatively different scenarios allowed:
• m2

lightest ≡ 0;

• m2
lightest � ∆m2

12,13;

• m2
lightest � ∆m2

12,13.

Need information outside of neutrino oscillations.

[talks by Cremonesi, Hannestad]
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What We Know We Don’t Know (3) – Are Neutrinos Majorana Fermions?

ν
L

you

ν
R
? ν

L
?

you

__

A massive charged fermion (s=1/2) is
described by 4 degrees of freedom:

(e−L ← CPT→ e+
R)

l “Lorentz”

(e−R ← CPT→ e+
L)

A massive neutral fermion (s=1/2) is
described by 4 or 2 degrees of freedom:

(νL ← CPT→ ν̄R)

l “Lorentz” ‘DIRAC’

(νR ← CPT→ ν̄L)

(νL ← CPT→ ν̄R)

‘MAJORANA’ l “Lorentz”

(ν̄R ← CPT→ νL)
How many degrees of freedom are required
to describe massive neutrinos?
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Why Don’t We Know the Answer?

If neutrino masses were indeed zero, this is a nonquestion: there is no
distinction between a massless Dirac and Majorana fermion.

Processes that are proportional to the Majorana nature of the neutrino
vanish in the limit mν → 0. Since neutrinos masses are very small, the
probability for these to happen is very, very small: A ∝ mν/E.

The “smoking gun” signature is the observation of LEPTON NUMBER
violation. This is easy to understand: Majorana neutrinos are their own
antiparticles and, therefore, cannot carry “any” quantum numbers —
including lepton number.

[talks by Cremonesi, Zuber]
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Search for the Violation of Lepton Number (or B − L)
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∑
i U

2
eimi

⇐ no longer lamp-post physics!

Best Bet: search for

Neutrinoless Double-Beta

Decay: Z → (Z + 2)e−e− ×

←(next)

←(next-next)
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What We Are Trying To Understand:

⇐ NEUTRINOS HAVE TINY MASSES

⇓ LEPTON MIXING IS “WEIRD” ⇓

VMNS ∼
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What Does It Mean?
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Who Cares About Neutrino Masses: Only∗ “Palpable” Evidence
of Physics Beyond the Standard Model

The SM we all learned in school predicts that neutrinos are strictly
massless. Massive neutrinos imply that the the SM is incomplete and
needs to be replaced/modified.

Furthermore, the SM has to be replaced by something qualitatively
different.

——————
∗ There is only a handful of questions our model for fundamental physics cannot

explain properly. These are, in order of “palpability” (my opinion):

• What is the physics behind electroweak symmetry breaking? (Higgs or not in SM).

• What is the dark matter? (not in SM).

• Why does the Universe appear to be accelerating? Why does it appear that the

Universe underwent rapid acceleration in the past? (not in SM – is this “particle

physics?”).
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What is the New Standard Model? [νSM]

The short answer is – WE DON’T KNOW. Not enough available info!

m
Equivalently, there are several completely different ways of addressing
neutrino masses. The key issue is to understand what else the νSM
candidates can do. [are they falsifiable?, are they “simple”?, do they
address other outstanding problems in physics?, etc]

We need more experimental input, and it looks like it may be coming in
the near/intermediate future! ⇒ This is why we are talking here today!
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Options include:

• modify SM Higgs sector (e.g. Higgs triplet) and/or

• modify SM particle content (e.g. SU(2)L Triplet or Singlet) and/or

• modify SM gauge structure and/or

• supersymmetrize the SM and add R-parity violation and/or

• augment the number of space-time dimensions and/or

• etc

Important: different options → different phenomenological consequences

[talks by Altarelli, Strumia, Gavela]
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Most Popular νSM

SM as an effective field theory – non-renormalizable operators

LνSM ⊃ −λij LiHLjH2Λ +O ( 1
Λ2

)
+H.c.

There is only one dimension five operator [Weinberg, 1979]. If Λ� 1 TeV, it
leads to only one observable consequence...

after EWSB LνSM ⊃ mij
2 νiνj ; mij = λij

v2

Λ .

• Neutrino masses are small: Λ� v → mν � mf (f = e, µ, u, d, etc)

• Neutrinos are Majorana fermions – Lepton number is violated!

• νSM effective theory – not valid for energies above at most Λ/λ.

• What is Λ? First naive guess is that M is the Planck scale – does not
work. Data require Λ ∼ 1014 GeV (anything to do with the GUT
scale?).

What else is this “good for”? Depends on the ultraviolet completion!
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How Do We Learn More?

In order to learn more, we need more information. Any new data and/or
idea is welcome, including

• measurements of the cosmic neutrino background (indirect, of course,
via CMB, large-scale structure, relic abundances, etc)

• searches for lepton number violation;

(neutrinoless double beta decay, etc)

• precision measurements of the neutrino oscillation parameters;

(νs from reactors, accelerators, sun, atmosphere, supernovae(?), etc)

• searches for fermion electric/magnetic dipole moments;

(electron edm, muon g − 2, etc)
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• precision studies of neutrino – matter interactions;

(Minerνa, NuSOnG, etc)

• collider experiments:

(LHC, etc)

– Can we “see” the physics responsible for neutrino masses at the LHC?
– YES!
Must we see it? – NO, but we won’t find out until we try!

– we need to understand the physics at the TeV scale before we can
really understand the physics behind neutrino masses (is there
low-energy SUSY?, etc).

[talks by Strumia, Gavela, Hannestad, et alia]
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[another crucial activity that may help reveal the origin of neutrino masses, in detail]

Charged-Leptons:

More specifically, charged-lepton flavor violation (CLFV)

(and, even more specifically, muons)

What is the connection?

• Both neutrinos and charged-leptons are, well, leptons;

• Facilities required for next-next generation oscillation experiments are also

ideal for next-generation CLFV.

& (not necessarily related to neutrino physics)

• Searches for CLFV provide unique, perhaps invaluable, opportunity for

running into new, heavy physics at or beyond the electroweak scale.
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Searches for Lepton Number Violation
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[hep-ph/0109217]
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André de Gouvêa Northwestern

SM Expectations?

In the old SM, the rate for charged lepton flavor violating processes is trivial to

predict. It vanishes because individual lepton-flavor number is conserved:

• Nα(in) = Nα(out), for α = e, µ, τ .

But individual lepton-flavor number are NOT conserved– ν oscillations!

Hence, in the νSM (the old Standard Model plus operators that lead to neutrino

masses) µ→ eγ is allowed (along with all other charged lepton flavor violating

processes).

These are Flavor Changing Neutral Current processes, observed in the quark

sector (b→ sγ, K0 ↔ K̄0, etc).

Unfortunately, we do not know the νSM expectation for charged lepton flavor

violating processes → we don’t know the νSM Lagrangian !
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One contribution known to be there: active neutrino loops (same as quark sector).

In the case of charged leptons, the GIM suppression is very efficient. . .

e.g.: Br(µ→ eγ) = 3α
32π

∣∣∣∑i=2,3 U
∗
µiUei

∆m2
1i

M2
W

∣∣∣2 < 10−54

[Uαi are the elements of the leptonic mixing matrix,

∆m2
1i ≡ m2

i −m2
1, i = 2, 3 are the neutrino mass-squared differences]
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e.g.: SeeSaw Mechanism [minus “Theoretical Prejudice”]

arXiv:0706.1732 [hep-ph]
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Independent from neutrino masses, there are strong theoretical reasons to
believe that the expected rate for flavor changing violating processes is
much, much larger than naive νSM predictions and that discovery is just
around the corner.

Due to the lack of SM “backgrounds,” searches for rare muon processes,
including µ→ eγ, µ→ e+e−e and µ+N → e+N (µ-e–conversion in
nuclei) are considered ideal laboratories to probe effects of new physics at
or even above the electroweak scale.

Indeed, if there is new physics at the electroweak scale (as many theorists
will have you believe) and if mixing in the lepton sector is large
“everywhere” the question we need to address is quite different:

Why haven’t we seen charged lepton flavor violation yet?
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Model Independent Considerations

LCLFV =
mµ

(κ+1)Λ2 µ̄RσµνeLF
µν+

+ κ
(1+κ)Λ2 µ̄LγµeL

(
ūLγ

µuL + d̄Lγ
µdL
)

• µ→ e-conv at 10−17 “guaranteed” deeper

probe than µ→ eγ at 10−14.

• We don’t think we can do µ→ eγ better than

10−14. µ→ e-conv “only” way forward after MEG.

• If the LHC does not discover new states

µ→ e-conv among very few process that can

access 1000+ TeV new physics scale:

tree-level new physics: κ� 1, 1
Λ2 ∼

g2θeµ
M2

new
.
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[Agashe, Blechman, Petriello, hep-ph/0606021]

Randall-Sundrum Model

(fermions in the bulk)

- dependency on UV-completion(?)

- dependency on Yukawa couplings

- “complementarity” between µ→ eγ,

µ− e conv

SUSY GUT

- dependency on choice for

neutrino Yukawa couplings

- scan restricted to scenarios

LHC discovers new states.

[Calibbi et al, PRD74, 116002 (2006)]
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What is This Good For?

While specific models (see last slide) provide estimates for the rates for
CLFV processes, the observation of one specific CLFV process cannot
determine the underlying physics mechanism (this is always true when all
you measure is the coefficient of an effective operator).

Real strength lies in combinations of different measurements, including:

• kinematical observables (e.g. angular distributions in µ→ eee);

• other CLFV channels;

• neutrino oscillations;

• measurements of g − 2 and EDMs;

• collider searches for new, heavy states;

• etc.
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CONCLUSIONS

The venerable Standard Model has finally sprung a leak – neutrinos are
not massless!

1. we have a very successful parametrization of the neutrino sector,

and we have identified what we know we don’t know → Well-defined

experimental program.

2. neutrino masses are very small – we don’t know why, but we think it

means something important.

3. we need a minimal νSM Lagrangian. In order to decide which one is

“correct” we need to uncover the faith of baryon number minus

lepton number (0νββ is the best [only?] bet).
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4. We know very little about the new physics uncovered by neutrino

oscillations.

• It could be renormalizable → “boring” Dirac neutrinos

• It could be due to Physics at absurdly high energy scales M � 1 TeV →
high energy seesaw. How can we ever convince ourselves that this is correct?

• It could be due to very light new physics. Prediction: new light propagating

degrees of freedom – sterile neutrinos

• It could be due to new physics at the TeV scale → either weakly coupled, or

via a more subtle lepton number breaking sector. Predictions: charged

lepton flavor violation, collider signatures!

5. We need more experimental input – and more seems to be on the way

(this is a data driven field). We only started to figure out what is going on.

6. There is plenty of room for surprises, as neutrinos are very narrow but

deep probes of all sorts of physical phenomena. Remember that neutrino

oscillations are “quantum interference devices” – potentially very sensitive

to whatever else may be out there (e.g., Λ ' 1014 GeV).
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7. We know that charged lepton flavor violation must occur. Naive

expectations are really tiny in the νSM (neutrino masses too small).

8. If there is new physics at the electroweak scale, we “must” see CLFV very

soon (MEG taking date – stay tuned!). ‘Why haven’t we seen it yet?’

9. It is fundamental to probe all CLFV channels. While in many scenarios

µ→ eγ is the “largest” channel, there is no theorem that guarantees this

(and many exceptions).

10. CLFV may be intimately related to new physics unveiled with the discovery

of non-zero neutrino masses. It may play a fundamental role in our

understanding of the seesaw mechanism, GUTs, the baryon-antibaryon

asymmetry of the Universe. We won’t know for sure until we see it! ⇒
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André de Gouvêa Northwestern

11. Complementary to LHC and other searches for new physics. Guaranteed to

learn something regardless of scenario:

• New d.o.f. at LHC and positive signal for next-generation CLFV: best case

scenario. Differentiate new scenarios for the new physics. Connections to

neutrino masses?

• New d.o.f. at LHC and negative signal for next-generation CLFV: New

physics flavor blind. Why? Neutrino masses are very high energies?

Leptogenesis disfavored? Neutrino Mass Physics Weakly Coupled?

• No new d.o.f. at LHC and positive signal for next-generation CLFV: New

physics beyond the reach of LHC. Can we learn more? How?

• No new d.o.f. at LHC and negative signal for next-generation CLFV:

Next-next generation CLFV (possibly µ→ e-conversion) among very few

probes of new physics scales (along with neutrino oscillation experiments,

astrophysics, cosmology, etc). How do we learn more?
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Backup Slides . . .
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André de Gouvêa Northwestern

High-energy seesaw has no observable consequence other than non-zero neutrino

masses, except, perhaps,

Baryogenesis via Leptogenesis

One of the most basic questions we are allowed to ask (with any real hope
of getting an answer) is whether the observed baryon asymmetry of the
Universe can be obtained from a baryon–antibaryon symmetric initial
condition plus well understood dynamics. [Baryogenesis]

This isn’t just for aesthetic reasons. If the early Universe undergoes a
period of inflation, baryogenesis is required, as inflation would wipe out
any pre-existing baryon asymmetry.

It turns out the seesaw mechanism contains all necessary ingredients to
explain the baryon asymmetry of the Universe as long as the right-handed
neutrinos are heavy enough – M > 109 GeV (with some exceptions that I
won’t have time to mention).
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In the old SM, (electroweak) baryogenesis does not work – not enough
CP-invariance violation, Higgs boson too light.

Neutrinos help by providing all the necessary ingredients for successful
baryogenesis via leptogenesis.

• Violation of lepton number, which later on is transformed into baryon
number by nonperturbative, finite temperature electroweak effects (in
one version of the νSM, lepton number is broken at a high energy
scale M).

• Violation of C-invariance and CP-invariance (weak interactions, plus
new CP-odd phases).

• Deviation from thermal equilibrium (depending on the strength of the
relevant interactions).
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E.g. – thermal seesaw leptogenesis, L ⊃ −yiαLiHNα − Mαβ
N

2 NαNβ +H.c.

• L-violating processes

• y ⇒ CP-violation

• deviation from thermal eq.
constrains combinations of

MN and y.

• need to yield correct mν

not trivial!

[G. Giudice et al, hep-ph/0310123]

[Fukugita, Yanagida]
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E.g. – thermal, seesaw leptogenesis, L ⊃ −yiαLiHNα − Mαβ
N

2 NαNβ +H.c.

[G. Giudice et al, hep-ph/0310123]

It did not have to work – but it does

MSSM picture does not quite work – gravitino problem

(there are ways around it, of course...)
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Fourth Avenue: Higher Order Neutrino Masses from ∆L = 2 Physics.

Imagine that there is new physics that breaks lepton number by 2 units at
some energy scale Λ, but that it does not, in general, lead to neutrino
masses at the tree level.

We know that neutrinos will get a mass at some order in perturbation
theory – which order is model dependent!
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9

TABLE I: Dimension-five through dimension-eleven LNV operators analyzed in this survey. The first two columns display the
operator name and field structure, respectively. Column three presents the induced neutrino mass expressions, followed by
the inferred scale of new physics, Λν . Column five lists favorable modes of experimental exploration. Column six describes an
operator’s current status according to the key U (Unconstrained), C (Constrained) and D (Disfavored). See text for details.

O Operator mαβ Λν (TeV) Best Probed Disfavored

4a LiLjQiū
cHkεjk

yu

16π2

v2

Λ 4 × 109 ββ0ν U

4b LiLjQkūcHkεij
yug2

(16π2)2
v2

Λ 6 × 106 ββ0ν U

5 LiLjQkdcH lHmHiεjlεkm
yd

(16π2)2
v2

Λ 6 × 105 ββ0ν U

6 LiLjQkūcH lHkHiεjl
yu

(16π2)2
v2

Λ 2 × 107 ββ0ν U

7 LiQj ēcQkHkH lHmεilεjm y%β

g2

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
4 × 102 mix C

8 LiēcūcdcHjεij y%β

ydyu

(16π2)2
v2

Λ 6 × 103 mix C

9 LiLjLkecLlecεijεkl
y2

"
(16π2)2

v2

Λ 3 × 103 ββ0ν U

10 LiLjLkecQldcεijεkl
y"yd

(16π2)2
v2

Λ 6 × 103 ββ0ν U

11a LiLjQkdcQldcεijεkl
y2

dg2

(16π2)3
v2

Λ 30 ββ0ν U

11b LiLjQkdcQldcεikεjl
y2

d
(16π2)2

v2

Λ 2 × 104 ββ0ν U

12a LiLjQiū
cQjūc y2

u
(16π2)2

v2

Λ 2 × 107 ββ0ν U

12b LiLjQkūcQlū
cεijε

kl y2
ug2

(16π2)3
v2

Λ 4 × 104 ββ0ν U

13 LiLjQiū
cLlecεjl

y"yu

(16π2)2
v2

Λ 2 × 105 ββ0ν U

14a LiLjQkūcQkdcεij
ydyug2

(16π2)3
v2

Λ 1 × 103 ββ0ν U

14b LiLjQiū
cQldcεjl

ydyu

(16π2)2
v2

Λ 6 × 105 ββ0ν U

15 LiLjLkdcLiūcεjk
ydyug2

(16π2)3
v2

Λ 1 × 103 ββ0ν U

16 LiLjecdcēcūcεij
ydyug4

(16π2)4
v2

Λ 2 ββ0ν, LHC U

17 LiLjdcdcd̄cūcεij
ydyug4

(16π2)4
v2

Λ 2 ββ0ν, LHC U

18 LiLjdcucūcūcεij
ydyug4

(16π2)4
v2

Λ 2 ββ0ν, LHC U

19 LiQjdcdcēcūcεij y%β

y2
dyu

(16π2)3
v2

Λ 1 ββ0ν, HElnv, LHC, mix C

20 LidcQiū
cēcūc y%β

ydy2
u

(16π2)3
v2

Λ 40 ββ0ν, mix C

21a LiLjLkecQlucHmHnεijεkmεln
y"yu

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
2 × 103 ββ0ν U

21b LiLjLkecQlucHmHnεilεjmεkn
y"yu

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
2 × 103 ββ0ν U

22 LiLjLkecLkēcH lHmεilεjm
g2

(16π2)3
v2

Λ 4 × 104 ββ0ν U

23 LiLjLkecQkd̄cH lHmεilεjm
y"yd

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
40 ββ0ν U

24a LiLjQkdcQldcHmHiεjkεlm
y2

d
(16π2)3

v2

Λ 1 × 102 ββ0ν U

24b LiLjQkdcQldcHmHiεjmεkl
y2

d
(16π2)3

v2

Λ 1 × 102 ββ0ν U

25 LiLjQkdcQlucHmHnεimεjnεkl
ydyu

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
4 × 103 ββ0ν U

26a LiLjQkdcLiēcH lHmεjlεkm
y"yd

(16π2)3
v2

Λ 40 ββ0ν U

26b LiLjQkdcLkēcH lHmεilεjm
y"yd

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
40 ββ0ν U

27a LiLjQkdcQid̄
cH lHmεjlεkm

g2

(16π2)3
v2

Λ 4 × 104 ββ0ν U

27b LiLjQkdcQkd̄cH lHmεilεjm
g2

(16π2)3
v2

Λ 4 × 104 ββ0ν U

28a LiLjQkdcQjū
cH lHiεkl

ydyu

(16π2)3
v2

Λ 4 × 103 ββ0ν U

28b LiLjQkdcQkūcH lHiεjl
ydyu

(16π2)3
v2

Λ 4 × 103 ββ0ν U

28c LiLjQkdcQlū
cH lHiεjk

ydyu

(16π2)3
v2

Λ 4 × 103 ββ0ν U

29a LiLjQkucQkūcH lHmεilεjm
y2

u
(16π2)2

v2

Λ

“
1

16π2 + v2

Λ2

”
2 × 105 ββ0ν U

29b LiLjQkucQlū
cH lHmεikεjm

g2

(16π2)3
v2

Λ 4 × 104 ββ0ν U

30a LiLjLiēcQkūcHkH lεjl
y"yu

(16π2)3
v2

Λ 2 × 103 ββ0ν U

30b LiLjLmēcQnūcHkH lεikεjlε
mn y"yu

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
2 × 103 ββ0ν U

31a LiLjQid̄
cQkūcHkH lεjl

ydyu

(16π2)2
v2

Λ

“
1

16π2 + v2

Λ2

”
4 × 103 ββ0ν U

Effective

Operator

Approach

(∆L = 2)

AdG, Jenkins,

0708.1344 [hep-ph]

(there are 129

of them if you

discount different

Lorentz structures!)

classified by Babu

and Leung in

NPB619,667(2001)
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να ν̄β

LNV
Operator

(a)
(b)

ν̄βνα

yv yv

(c)

ν̄βνα

yv yv

y
H−

ē
yβ

(d) (e)

γ, g

W, Z

να ν̄β

vv

W, Z

γ, g

ν̄βνα

yy
H−

e ē

v v

H+

yβyα
h0h0h0

h0
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André de Gouvêa Northwestern

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 40 60 80 100 120
m4 (GeV)

M
A

X
 Γ

(H
→

νN
)/

Γ(
H

→
bb

- )

MH=120 GeV

Weak Scale Seesaw, and Accidentally Light Neutrino Masses
[AdG arXiv:0706.1732]

What does the seesaw Lagrangian predict

for the LHC?

Nothing much, unless. . .

• MN ∼ 1− 100 GeV,

• Yukawa couplings larger than naive
expectations.

⇐ H → νN as likely as H → bb̄!

(NOTE: N → `q′q̄ or ``′ν (prompt)

“Weird” Higgs decay signature! )

ALSO: “Majorana neutrinos at the LHC,”

see Han, Zhang, hep-ph/0604064

et cetera
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(a) (b) (c)

q

q qq ℓℓ

g gg

qq ℓν

q

g g

q qqq ℓ ℓ

LNV at Colliders ⇒ LHC: pp→ `±`±+ multi-jets

OK OK ν in final state
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dc dc

ec dc

Order-One Coupled, Weak Scale Physics

Can Also Explain Naturally Small

Majorana Neutrino Masses:

Multi-loop neutrino masses from lepton number

violating new physics.

−LνSM ⊃
∑4

i=1
Miφiφ̄i + iy1QLφ1 + y2dcdcφ2 + y3ecdcφ3 + λ14φ̄1φ4HH + λ234Mφ2φ̄3φ4 + h.c.

mν ∝ (y1y2y3λ234)λ14/(16π)4 → neutrino masses at 4 loops, requires Mi ∼ 100 GeV!

WARNING: For illustrative purposes only. Details still to be worked out. Scenario most

likely ruled out by charged-lepton flavor-violation, LEP, Tevatron, and HERA.

[arXiv:0708.1344]
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CP-invariance Violation in Neutrino Oscillations

The most promising approach to studying CP-violation in the leptonic
sector seems to be to compare P (νµ → νe) versus P (ν̄µ → ν̄e).

Aµe = U∗e2Uµ2

(
ei∆12 − 1

)
+ U∗e3Uµ3

(
ei∆13 − 1

)
where ∆1i = ∆m2

1iL
2E , i = 2, 3.

The amplitude for the CP-conjugate process is

Āµe = Ue2U
∗
µ2

(
ei∆12 − 1

)
+ Ue3U

∗
µ3

(
ei∆13 − 1

)
.

[remember: according to unitarty, Ue1U
∗
µ1 = −Ue2U∗µ2 − Ue3U∗µ3]
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In general, |A|2 6= |Ā|2 (CP-invariance violated) as long as:

• Nontrivial “Weak” Phases: arg(U∗eiUµi) → δ 6= 0, π;

• Nontrivial “Strong” Phases: ∆12, ∆13 → L 6= 0;

• Because of Unitarity, we need all |Uαi| 6= 0 → three generations.

All of these can be satisfied, with a little luck: given that two of the three
mixing angles are known to be large, we need |Ue3| 6= 0.

The goal of next-generation neutrino experiments is to determine the
magnitude of |Ue3|. We need to know this in order to understand how to
study CP-invariance violation in neutrino oscillations!
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In the real world, life is much more complicated. The lack of knowledge
concerning the mass hierarchy, θ13, and θ23, for example, leads to several
degeneracies and ambiguities.

Note that, in order to see CP-invariance violation, we need the
“subleading” terms (and need to make sure that the leading atmospheric
terms do not average out)!

In order to ultimately measure a new source of CP-invariance violation,
we will need to combine different measurements:
– oscillation of muon neutrinos and antineutrinos,
– oscillations at accelerator and reactor experiments,
– experiments with different baselines (or broad energy spectrum),
– etc.
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Most direct probe of the lightest neutrino mass – β-decay spectrum

Kinemarical Effect of Non-Zero mν . In practice sensitive to “electron neutrino mass”:

m2
νe ≡

∑
i
|Uei|2m2

i Next Generation m2
νe < (0.2 eV)2

E0 = 18.57 keV

t1/2 = 12.32 years

e

e
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Big Bang Neutrinos are Warm Dark Matter

• Constrained by the Large Scale

Structure of the Universe.

Constraints depend on

• Data set analysed;

• “Bias” on other parameters;

• . . .

Bounds can be evaded with

non-standard cosmology. Will we

learn about neutrinos from

cosmology or about cosmology

from neutrinos?
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The Seesaw Lagrangian

A simplea, renormalizable Lagrangian that allows for neutrino masses is

Lν = Lold − λαiLαHN i −
3∑
i=1

Mi

2
N iN i +H.c.,

where Ni (i = 1, 2, 3, for concreteness) are SM gauge singlet fermions. Lν
is the most general, renormalizable Lagrangian consistent with the SM
gauge group and particle content, plus the addition of the Ni fields.

After electroweak symmetry breaking, Lν describes, besides all other SM
degrees of freedom, six Majorana fermions: six neutrinos.

aOnly requires the introduction of three fermionic degrees of freedom, no new inter-

actions or symmetries.
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To be determined from data: λ and M .

The data can be summarized as follows: there is evidence for three
neutrinos, mostly “active” (linear combinations of νe, νµ, and ντ ). At
least two of them are massive and, if there are other neutrinos, they have
to be “sterile.”

This provides very little information concerning the magnitude of Mi

(assume M1 ∼M2 ∼M3).

Theoretically, there is prejudice in favor of very large M : M � v. Popular
examples include M ∼MGUT (GUT scale), or M ∼ 1 TeV (EWSB scale).

Furthermore, λ ∼ 1 translates into M ∼ 1014 GeV, while thermal
leptogenesis requires the lightest Mi to be around 1010 GeV.

we can impose very, very few experimental constraints on M
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What We Know About M :

• M = 0: the six neutrinos “fuse” into three Dirac states. Neutrino
mass matrix given by µαi ≡ λαiv.

The symmetry of Lν is enhanced: U(1)B−L is an exact global
symmetry of the Lagrangian if all Mi vanish. Small Mi values are
’tHooft natural.

• M � µ: the six neutrinos split up into three mostly active, light ones,
and three, mostly sterile, heavy ones. The light neutrino mass matrix
is given by mαβ =

∑
i µαiM

−1
i µβi [m ∝ 1/Λ ⇒ Λ = M/µ2].

This the seesaw mechanism. Neutrinos are Majorana fermions.
Lepton number is not a good symmetry of Lν , even though
L-violating effects are hard to come by.

• M ∼ µ: six states have similar masses. Active–sterile mixing is very
large. This scenario is (generically) ruled out by active neutrino data
(atmospheric, solar, KamLAND, K2K, etc).
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Why are Neutrino Masses Small? – Different Possibilities!

If µ�M , below the mass scale M ,

L5 =
LHLH

2Λ
.

Neutrino masses are small if Λ� 〈H〉. Data require Λ ∼ 1014 GeV.

In the case of the seesaw,

Λ ∼ M

λ2
,

so neutrino masses are small if either

• they are generated by physics at a very high energy scale M � v

(high-energy seesaw); or

• they arise out of a very weak coupling between the SM and a new, hidden

sector (low-energy seesaw); or

• cancellations among different contributions render neutrino masses

accidentally small (“fine-tuning”).
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Low-Energy Seesaw [AdG, PRD72, 033005 (2005)]

[AdG, Jenkins, Vasudevan, PRD75, 013003 (2007)]

“Oscillation” Sterile States

Dark Matter?

Pulsar Kicks?

Also effects in 0νββ,

tritium beta-decay,

supernova neutrino oscillations,

NEEDS non-standard cosmology.
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Beyond The Dim-5 Operator: AdG, Jenkins, 0708.1344[hep-ph]

“Directly Accessible”

Out of “direct” reach if not weakly-coupled (?)

|
|
|
|
|
|
|

Colliders

g − 2 CLFV
EDM ⇓

(seesaw)
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Anomalous Magnetic Moment of the Muon, (g − 2)/2 ≡ aµ

PLUS: Interplay with LHC – if there is new physics at the TeV scale, aµ can differentiate

among different models, provide precision measurement of model parameters.
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∆aµ: we need to dig a little more!
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