0vDBD: Status and expectations over the next ~5 years

Oliviero Cremonesi INFN, Sezione di Milano Bicocca

European Strategy for Future Neutrino Physics, 1 Oct 2009, CERN

Outline

Introduction to $\beta\beta(0\nu)$

- Goal
- NME
- Experimental Approaches
- Sensitivity
- **Present Status**
- Short term program
- Conclusions

Nuclear Double Beta Decay

Unique process to measure mass and nature of the neutrino

Mass Mechanism: exchange of a light neutrino

LH neutrino (L=-1) is absorbed at one vertex RH antineutrino (L=1) is emitted at the other vertex

Majorana particle

• Helicity flip

In the limit of small neutrino masses, the amplitude is proportional to (effective neutrino mass)

$$\langle m_{\nu} \rangle = \sum_{k} U_{ek}^{2} m_{k}$$

= $c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{i\alpha} m_{2} + s_{13}^{2} e^{i\beta} m_{3}$

Seven unknown quantities:

- 3 masses: m_k
- 2 angles: θ_{12} and θ_{13}
- 2 CP violating phases: α and β

Only one experimental constraint More complementary measuremets needed!

Neutrino mass hierarchies

Hierarchies: neutrino mass ordering scenarios compatible with neutrino oscillation experiments

 $\langle m_{v} \rangle = f(m_{low}, U_{ek})$

 $< m_{v} > can be plotted as a function of the lightest neutrino mass$

Two bands appear in each plot, corresponding to inverted and direct hierarchy The two bands merge in the degenerate case (the only one presently probed)

degeneration: $m_1 \approx m_2 \approx m_3$

inverse hierarchy: $m_3 \ll m_1 \approx m_2$

normal hierarchy: $m_1 \approx m_2 \gg m_3$

Present bounds

Combined informations:

- cosmology
- single β -decay
- double β -decay •

Sensitivity (eV)

Present	Future
0.7-1.0	0.1
0.5	0.05
2.2	0.2
and TROITSK	
	0.7-1.0 0.5 2.2

Decay rate

Extracting m_v from $T_{1/2}$

$$\mathbf{m}_{v} \text{ range: } \left(\frac{1}{\mathsf{T}_{1/2}^{0 \vee \beta \beta} \mathsf{F}_{Nhigh}} \cdot \frac{1}{\mathsf{T}_{1/2}^{0 \vee \beta \beta} \mathsf{F}_{Nhigh}} \right)$$

But ...

which selection of NME values should be used?

Nuclear Matrix Elements

Nuclear matrix elements are calculated according to various models: QRPA (RQRPA, SQRPA,), Shell model ...

with sometimes (particularly in the past) quite different results

suggestion from Bahcall et al.

use the nuclear matrix range as an uncertainty: « Democratic approach »

BUT

- does not take into account the improvements of the Models
- does not help in the choice of the best candidate for an experiment

Recently ...

exchanges between groups to

- understand discrepencies and evaluate errors
- use of β and $2\nu\beta\beta$ decay data to fix parameters in QRPA
- new efforts (SM)
- new methods (IBM)

new results are much more similar than in the past !!!

Nuclear Matrix Elements Status: MEDEX09

- QRPA from F. Šimkovic, A Faessler, V. Rodin, P. Vogel, and J. Engel, Phys. Rev. C77, 045503 (2008), with gA =1.25, Jastrow SRC.
- SM from E. Caurier, J. Menendez, F. Nowacki, and A. Poves, Phys. Rev. Lett. 100, 052503 (2008).
- IBM-2 from J.Barea and F.Iachello, Phys. Rev. C79, 044301 (2009), gA =1.25, Jastrow SRC.

F.lachello proposal @ MEDEX09

HOMEWORK

Goal: All model calculations within 25% (estimated error).

All methods: do a test calculation of MGT, MF, MT for ⁷⁶Ge-⁷⁶Se (GERDA) and ¹³⁰Te-¹³⁰Xe (CUORE)

- with the same assumptions for model space and for single-particle energies
- with the same values of $g_A = 1.25$, $g_V = 1.00$
- most importantly, with the same transition operator.

Check on the wave functions: All methods should produce spectra of initial and final nuclei and their comparison with experiment. HOMEWORK

Check on radial integrals: Make sure that both methods, configuration space and momentum space, give the same result.

Alessandro Bettini (Padova) and Peter Grabmayr (Tübingen) will hold a joint theoryexperiment workshop at the Gran Sasso Laboratory (LNGS) in March 2010 to discuss the results of this homework.

Signal information

(A,Z) → (A,Z+2)⁺⁺ + 2 e-

Signal:

- One new isotope (ionised)
- Two electrons

In principle we can therefore obtain: Spectroscopic information

- Single electron energies
- Angle between electrons
- Sum energy of both electrons

Daughter ion (A,Z+2)

Gamma rays

- decays on excited states
- 511 keV photons in β^+ involving decays

Often only available information

DBD: electron sum energy

The **shape** of the two electron sum energy spectrum enables to distinguish among the most relevant decay modes

Most promising nuclides Q ~ 2-3 MeV

DBD: single electron distributions

Light neutrino exchange

V+A current

Experimental rate and sensitivity

Experimental $\beta\beta$ - 0ν rate with $N_{\beta\beta}$ $\beta\beta$ - 0ν decays observed

$$\tau_{1/2}^{0\nu} = \ln 2 \frac{\epsilon N_{nuclei} t_{meas}}{N_{\beta\beta}}$$

Experimental sensitivity to $\tau_{\frac{W}{2}}^{0\nu}$ with no $\beta\beta$ - 0ν decay observed $N_{\beta\beta} \leq (bkg \cdot \Delta E \cdot M \cdot t_{meas})^{\frac{1}{2}}$ at 1σ N_{nuclei} number of active nuclei in the experiment measuring time [y] [meas Μ detector mass [kg] detector efficiency 3 isotopic abundance i.a. atomic number Α energy resolution [keV] ΔE background [c/keV/y/kg] bkg

$$\sum \left(\tau_{1/2}^{0\nu}\right) \propto \epsilon \cdot \frac{i.a.}{A} \sqrt{\frac{Mt_{meas}}{\Delta E \cdot bkg}}$$

for *bkg* = 0, at 1σ

$$\sum \tau_{1/2}^{0\nu} \propto \frac{\epsilon \, i.a.}{A} \, M \, t_{meas}$$

Crucial parameters:

- Isotopical abundance
- Mass
- Energy resolution
- Background level

Inhomogeneous approach

- scintillation
- gaseous TPC
- gaseous drift chamber
- magnetic field and TOF

- neat reconstruction of event topology
- it is difficult to get large source mass
- several candidates can be studied with the same detector

Homogeneous approach

Source ≡ Detector (calorimetric technique)

- scintillation
- phonon-mediated detection
- solid-state devices
- gaseous detectors

- S constraints on detector materials
- very large masses are possible demonstrated: up to ~ 50 kg proposed: up to ~ 1000 kg
- with proper choice of the detector, very high energy resolution Ge-diodes Bolometers
- in gaseous/liquid xenon detector, indication of event topology
 - 😕 often contrasting requests

Choice of the isotope

	Q	i.a.
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.19
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6

- Transition Energy
- Isotopic Abundance
- Nuclear Matrix Elements

EXPERIMENTAL STATUS

Heidelberg – Moscow (HM) (stopped in May 2003)

dominated DBD scenario over a decade.claim

NEMO3 (running)

intermediate generation experiment capable to study different isotopes **CUORICINO (stopped in june 2008)**

intermediate generation experiment based on the bolometric technique. Demonstator of CUORE

Nucleus	Detector	EXP	Material	kg y	τ _{1/2} Limit (y) (90% CL)
⁷⁶ Ge	Ge diode	IGEX/HDM*	Ge	~ 47.7	> 1.6-1.9 x 10 ²⁵
⁸² Se	Tracking	NEMO3	Se	3.6	> 3.6 x 10 ²³
¹⁰⁰ Mo	Tracking	NEMO3	Мо	26.6	> 1.1 x 10 ²⁴
⁹⁶ Zr	Tracking	NEMO3	Zr	0.03	> 9.2 x 10 ²¹
¹⁵⁰ Nd	Tracking	NEMO3	Nd	0.1	> 1.8 x 10 ²¹
¹²⁸ Te	Bolometer	Cuoricino	TeO ₂		> 1.1 x 10 ²³
¹³⁰ Te	Bolometer	Cuoricino	TeO ₂	18	> 2.94 x 10 ²⁴
¹³⁶ Xe	Xe scint	DAMA	L Xe	~ 4.5	> 1.2 x 10 ²⁴
¹¹⁶ Cd		Solotvina			> 1.7 x 10 ²³
⁴⁸ Ca					> 1.4 x 10 ²²
¹⁶⁰ Gd					> 1.3 x 10 ²¹

* Existing claim for a **positive result** by part of the same group

Heidelberg-Moscow: ⁷⁶Ge

- 5 HP-Ge crystals, enriched to 87% in ⁷⁶Ge total active mass of 10.96 kg ⇒ 125.5 moles of ⁷⁶Ge
- run from 1990 to 2003 in Gran Sasso Underground Laboratory
- total statistics 71.7 kg×y 820 moles×y
- main background from U/Th in the set-up b≈0.11 c/keV/kg/y at Q_{ββ}
- lead box and nitrogen flushing of the detector

digital Pulse ShapeAnalysis(PSA)

1990 - 2001 data exposure = 35.5 kg×y SSD $\tau_{y_2}^{0v} > 1.9 \times 10^{25}$ years $\langle m_{y_2} \rangle < 0.35$ eV (0.3 - 1.24 eV)

H.V.Klapdor-Kleingrothaus et al., Eur. Phys. J. A12 (2001) 147

H.V.Klapdor et al.: ⁷⁶Ge 0v-DBD evidence

First claim in January 2002(Klapdor-Kleingrothaus HV et al. hep-ph/0201231) with a statistics of 55 kg y and a 2.2-3.1 statistical significance \rightarrow strong criticism claim confirmed in 2004 with the addition of a significant (~1/4) new statistics and improved in the following years

1990 - 2003 data, all 5 detectors exposure = 71.7 kg×y $\tau_{y_2} = 1.2 \times 10^{25}$ years $\langle m \rangle = 0.44$ eV

H.V.Klapdor-Kleingrothaus *et al.*, Phys. Lett. B 586 (2004) 198

1995-2003 data new re-analysis: SSE selection by MC & ANN 6.4σ signal 7.05 ± 1.11 events $2.23^{+0.44}_{-0.31}$ 10²⁵ years / 0.32 ± 0.03 eV

H.V.Klapdor-Kleingrothaus *et al.*, Phys. Scr. T127 (2006) 40–42 and all future experiment will certainly have to cope with this result

CUORICINO

TeO₂ thermal calorimeters Active isotope ¹³⁰Te

- natural abundance: a.i. = 33.9%
- transition energy: $Q_{\beta\beta} = 2529 \text{ keV}$
- encouraging predicted half life $\langle m_{\nu} \rangle \approx 0.3 \text{ eV} \Leftrightarrow \tau_{1/2}^{0\nu} \approx 10^{25} \text{ years}$

Absorber material TeO₂

- low heat capacity
- large crystals available
- radiopure

- intermediate size $\beta\beta$ experiment
- important test for
- radioactivity
- performance of large LTD arrays

CUORICINO results

- total statistics 18 kg \times y
- average energy resolution FWHM $\Delta E = 7.5$ keV at $Q_{\beta\beta}$ ($\sigma_{E}=1.3\%$)
- anticoincidence applied to reduce surface U/Th background and external γ 's
- background level: $b \approx 0.18 \pm 0.01 \text{ c/keV/kg/y} @ Q_{BB}$
 - 30% ± 10% ²⁰⁸TI (cryostat contamination)
 - 20% ± 10% TeO₂ surfaces (α contaminations)
 - 50% \pm 10% Cu surfaces (β contaminations)

NEMO-3

Tracking detector for $\beta\beta$ -2 ν and $\beta\beta$ -0 ν at Frejus (4800 m.w.e.)

05

04

03

calorimeter (scintillators)

NEMO-3: a unique tool to study $\beta\beta(2\nu)$

NEMO-3 $\beta\beta(0\nu)$ results

Isotope	Exposure (kg·v)	T _{1/2} (0vββ) [years]	⟨m _v ⟩ ʃeV]	NME reference
¹⁰⁰ Mo	26.6	> 1.1 · 10 ²⁴	< 0.45 - 0.93	1-3
⁸² Se	3.6	> 3.6 · 10 ²³	< 0.9 – 1.6	1-3
			< 2.3	7
¹⁵⁰ Nd	0.095	> 1.8 · 10 ²²	< 1.5 – 2.5	4,5
			< 4.0 - 6.8	6
¹³⁰ Te	1.4	> 9.8 · 10 ²²	< 1.6 – 3.1	2,3
⁹⁶ Zr	0.031	> 9.2 · 10 ²¹	< 7.2 – 19.5	2,3
⁴⁸ Ca	0.017	> 1.3 · 10 ²²	< 29.6	7

Nuclear Matrix Elements references:

[1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R)

[2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315

[3] F.Simkovic, et al. Phys.Rev. C 77 (2008) 045503

[4] V.A. Rodin et al. Nucl.Phys. A 793 (2007) 213

[5] V.A. Rodin et al. Nucl.Phys. A 766(2006) 107

[6] J.H.Hirsh et al. Nucl.Phys. A 582(1995) 124

[7] E.Caurrier et al. Phys.Rev.Lett 100 (2008) 052503

HM claim: CUORICINO 3σ

$^{100}Mo/^{130}Te$ predicted $T_{1/2}^{\ 0v}\left(y\right)$ range

siedo mraeicu N

 $T_{1/2} x \ 10^{24} \ y \ for \ ^{100}Mo$

Present situation

Klapdor "claim"

Goals of next generation 0v-DBD experiments

sensitivities of few 0.01 eV on (m)

- hierarchy problem solution
- chances to observe $\beta\beta(0\nu)$ (LNV, Majorana ν 's)

confirmation/rejection of the ⁷⁶Ge result

confirmation :	sensitivities of few 100 meV on $\langle \mathbf{m}_{y} \rangle$ are enough
	check different isotopes
rejection :	much better sensitivities on $\langle m_{\nu} \rangle$ must be achieved

How?

- promote as many as possible experiments on different isotopes
- reduce uncertainties in nuclear matrix F_{N}
- Improve all parameters determining sensitivity

increase isotopic abundance by enrichment reduce background by:

$$\sum (\tau_{1/2}^{0\nu}) \propto \epsilon \cdot \frac{a.i.}{A} \sqrt{\frac{Mt_{meas}}{\Delta E \cdot bkg}}$$

increase experimental mass

material selection and proper handling choosing proper technique using signatures improving energy resolution

Expectations

THE INTERNATIONAL 0v-DBD STRATEGY

APS neutrino study

We recommend, as a high priority, that a phased program of increasingly sensitive searches for

neutrinoless nuclear double beta decay $(0\nu\beta\beta)$

be initiated as soon as possible.

Range	Covered spectrum	Required mass	Status
100 - 500	Quasi-degenerate	200 kg	close
20 – 50	Inverted	1 ton	proposed
2 – 5	Any	100 tons	future technology

In the first two stages, more than one experiment is desirable, worldwide, both to permit confirmation and to explore the underlying physics.

ASPERA roadmap

PHASED PROGRAM

Present: 10-50 kg Next Future: 200-500 kg Long range: tons

Name	Nucleus	Method	Location	European Members	Others
		Running e	experiments		
CUORICINO	¹³⁰ Te	bolometric	LNGS	IT, NL, ES	US
NEMO-3	¹⁰⁰ Mo ⁸² Se	tracko-calo	LSM	FR, CZ, UK ES, FIN	US, RU, JP
		Construct	tion funding		
CUORE	¹³⁰ Te	bolometric	LNGS	IT, NL, ES	US
GERDA	⁷⁶ Ge	ionization	LNGS	DE,BE,IT,PO	RU
		Substantia	R&D fundin	g	
EXO	¹³⁶ Xe	tracking	WIPP	СН	US, RU, CAN
SuperNEMO	¹⁵⁰ Nd or ⁸² Se	tracko-calo	LSC or LSM	FR,CZ,UK, SK, PL, ES, FIN	US,RU, JP UKR
		R&D and/or co	onceptual de	sign	
CANDLES	⁴⁸ Ca	scintillation	Oto Lab	ja	JP
CARVEL	⁴⁸ Ca	scintillation	Solotvina	ā	UKR, RU, US
COBRA	¹¹⁶ Cd, ¹³⁰ Te	ionization	LNGS	UK, DE, IT, PO, SK	US
DCBA	¹⁵⁰ Nd	tracking	t.b.d.	-	JP
MAJORANA	⁷⁶ Ge	ionization	SNOLAB or DUSEL	-	US
MOON	¹⁰⁰ Mo	tracking	t.b.d.	-	JP
SIX ++	¹⁵⁰ Nd	scintillation	SNOLAB	-	CAN, US +
other decay modes					
TGV	¹⁰⁶ Cd	el. capture, running	LSM	FR, CZ	RU

ASPERA roadmap

Isotopical enrichment

Isotope enrichment will have a large impact on the cost of future Experiments.The production of a large amount of isotopes is possible though ultra-centrifugation, laser separation (AVLIS) or Ion Cyclotron Resonance (ICR) techniques. [...]

A Design Study should be done for a large production (100kg) with the ICR technique.

Nuclear Matrix Elements

We finally reiterate the importance of assessing and reducing the uncertainty in our knowledge of the corresponding nuclear matrix elements, experimentally and theoretically as well as the importance of studying alternative interpretations of neutrino-less double beta decay such as those offered by super-symmetry. This requires a program as vigorous, although not as expensive, as construction of the double beta detectors itself.

Experiment	lsotope	lsotope mass (kg)	Т _{1/2} (у)	Data taking Start	Status
CUORE	¹³⁰ Te	203	2.1 x 10 ²⁶	2012	Construction
GERDA I	⁷⁶ Ge	17.9	3 x 10 ²⁵	2009	Construction
GERDA II	⁷⁶ Ge	40	2.0 x 10 ²⁶	2011	Funded
EXO-200	¹³⁶ Xe	200	6.4 x 10 ²⁵	2009	Construction
Majorana	⁷⁶ Ge	30-60	1.1 x 10 ²⁶	2011	Funded R&D
SuperNEMO	⁸² Se	100	2.1 x 10 ²⁶	2011	R&D
SuperNEMO	¹⁵⁰ Nd	100	1.0 x 10 ²⁶	2011	R&D
CANDLES	⁴⁸ Ca	0.35		2009	Funded R&D
MOON II	¹⁰⁰ Mo	120			R&D
DCBA	¹⁵⁰ Nd	20			R&D
SNO+	¹⁵⁰ Nd	50-500			R&D
COBRA	¹¹⁶ Cd	420			R&D
COBRA	¹³⁰ Te	420			R&D

IN EUROPE

CUORE R&D

CUORE GERDA Cuoricino COBRA

DAMA

GERDA

Germany, Italy, Belgium, Russia

- **Goal**: analise HM evidence in a short time using existing ⁷⁶Ge enriched detectors (HM, Igex) **Concept**: naked Ge crystals in LAr
 - 1.5 m (LAr) + 10 cm Pb + 2 m water
 - 2-3 orders of magnitude better bkg than present Status-of-the-Art
 - active shielding with LAr scintillation

3 phases experiment

Phase I: operate refurbished HM & IGEX enriched detectors (~20 kg)

- Undergriound commissioning
- Background: 0.01 counts/ keV kg y
- Scrutinize ⁷⁶Ge claim with the same nuclide (5s exclusion/confirmation)
- Half life sensitivity: 3 x 10²⁵ y
- Start data taking: 2009

Phase II: additional ~20 kg ⁷⁶Ge diodes (segmented detectors)

- Background: 0.001 counts / keV kg y
- Sensitivity after 100 kg y (~3 years): 2 x 10²⁶ y ((m, < 90 290 meV))

Phase III: depending on physics results of Phase I/I

 \sim 1 ton experiment in world wide collaboration with MAJORANA

< m ٍ > < 20 - 50 meV

GERDA sensitivity

 \rightarrow if signal found in HM by KK is true $\beta\beta$ decay, this would produce in ~ 1 year GERDA I data taking (assuming 18 kg y exposure) 7 cts, above bckg of 0.5 cts \rightarrow probability that bckg simulate signal ~ 10⁻⁵

GERDA design

Cleanroom

Lock for detector insertion

Water tank (650 m³ H₂O) Equipped with 66 PMTs for μ -veto

Cryostat (70 m³ LAr) LAr scintillation light readout can be implemented **Detector Array**

GERDA cryostat

Built with low activity steel 1-5 mBq/kg

- Wipe cleaning to reduce Rn emanation ~30 mBq (need 15 mBq)
- Mounting of inner Cu shielding plates (thickness 3/6 cm) completed
- LAr evaporation rate tested (< 2% day-1)
- LAr scintillation light readout to reduce external bckg in detectors can be implemented

GERDA water tank and muon veto

- Active shield
- Filled with ultra-pure water from Borexino plant
- 66 PMTs: Cherenkov detector
- Plastic scintillator on top of cleanroom

GERDA I: detector testing

Low mass detector holder: developed and tested

- Definition of detector handling protocol
- Optimization of thermal cyclings
- Bare Ge Crystals in L Ar
 - detector parameters are not deteriorated
 - >40 warming and cooling cycles carried out
 - More than 1 year of operation at low leakage

Same performance in LN₂/LAr

GERDA II: detetctors R&D

- test three 18-fold segmented detectors immersed directly in LN (full GERDA string)
- test 18-segment p-type detector
- detector response to IR & UV light

CUORE

<u>Cryogenic Underground Observatory for Rare Events</u>

- Closely packed array of 988 TeO₂ crystals 5×5×5 cm³ (750 g) 741 kg TeO₂ granular calorimeter 600 kg Te = 203 kg ¹³⁰Te
- Single high granularity detector

CUORE (2)

Large international Collaboration

I NL GB - US- CHINA

Good control of the background

- Dedicated underground setup
- CUORICINO

Still work in progress to control surface radioactivity contribution

Operated @ LNGS

- Special cryostat built with selected Materials
- Cryogen-free dilution refrigerator
- Shielded by several lead and PET layers

Approved in fall 2004

Under costruction since 2005

- 1000 TeO₂ crystals funded by INFN and DoE: delivery started end 2008
- The first CUORE tower (CUORE-0) will be assembled and operated in 2009

	В	D	T _{1/2}	<m<sub>v> </m<sub>
5 v sensitivitv	c/keV/ton/y	keV	10 ²⁶ y	meV
o y concludy	10	5	2.1	19-100

CUORE: hut

CUORE Hut is under construction at LNGS

- · Walls
- · Doors (& windows) underway
- MSP Installation
- Utilities Tender (published 6th February)
- · Clean Room Tender (to be published)
- Lead for the External Shielding
- Floors covering
- Shielding Lift (to be completed)
- Shielding horizontal movement
- Columns filling
- Nitrogen supply
- Precise leveling (Lift, MSP)
- Utilities installation
- Clean Room installation
- Small cranes installation
- Nitrogen distribution

CUORE: schedule

2008: Hut construction **Crystals production** 2009: Utilities **Clean room External Shielding** Cryogenics 2009-2012: TeO₂ crystals Cu production & cleaning 2010-2012: **CUOREO Detector assembly Faraday Cage** Front-end & DAQ 2012: **Detector complete**

CUORE-0

CUORE-0 = first CUORE tower to be installed in the CUORICINO dilution refrigerator (hall A @ LNGS)

Motivations

High statistics test of the many improvements/changes developped for the CUORE assembly procedure:

- gluing
- holder
- zero-contact approach
- Wires

• ...

CUORE demonstrator: expected background in the DBD and alpha energy regions reduced by a factor 3 with respect ro CUORICINO 0.07 counts/keV/kg/y

Powerful experiment: it will overtake soon CUORICINO sensitivity

Alessandrello et al.PLB 420 (1998) 109

Scintillating bolometers: BOLUX

A very promising technique for background reduction

Concept: separate the dangerous alpha background exploiting different scintillating properties

Scintillating bolometers: BOLUX

CdWO₄: 508g

- Already tested different scintillating crystals (CdWO₄, CaF₂, CaMoO₄, SrMoO₄, PbMoO₄, ZnSe, ...).
- With some of them we have obtained excellent results (for example $CdWO_4$, $CaMoO_4$ and ZnSe).

ZnSe:337 g

BOLUX: CdWO₄

Background CdWO₄ 3x3x6 (426 g) – Scatter Plot

724 hours

SuperNEMO

France, UK, Russia, Spain, USA, Japan, Czech Republic, Ukraine, Finland

• **concept**: scale NEMO3 setup

100 kg of ⁸²Se or ¹⁵⁰Nd

- possibility to produce ¹⁵⁰Nd with the French AVLIS facility
- tracking calorimeter
- already tested technology (NEMO3)
 - event topology (Detection of the 2 electrons)
 - single and sum energy + angular correlation
 - particle identification
- Background control
 - source purification
 - background level measurement
 - external background reduction (Rn)

3 years R&D aiming at a 50-90 meV <m_> sensitivity: T₁₆ > 2. 10²⁶ yr

- improvement of energy resolution
- increase of efficiency
- background reduction

funded by France, UK and Spain

Planar geometry

- source (40 mg/cm²): 12m²
- tracking volume: ~3000 channels
- calorimeter: ~1000 PMT Modular:
 - ~5 kg of enriched isotope/module
 - 100 kg: 20 modules
- ~ 60 000 channels for drift chamber ~ 20 000 PMT

energy resolution $\sigma_{\rm E}$ = 2.6% @ 3 MeV efficiency: 40%

Canfranc/LSM

- 2009: TDR
- 2011: commissioning and data taking of first modules in Canfranc (Spain)
- 2013: Full detector running

SuperNEMO

ULISSE project

MODANE UNDERGROUND LABORATORY 60'000 m³ EXTENSION

LABORATOIRE SOUTERRAINE DE MODANE AGRANDISSEMENT 60'000 m³

SuperNEMO

IN THE WORLD

EXO

- concept: scale Gotthard experiment adding Ba tagging to suppress background (¹³⁶Xe→¹³⁶Ba⁺⁺+2e)
- calorimetry + tracking
- single Ba⁺ detected by optical spectroscopy
- ¹³⁶Xe enrichment easier and safer
- LXe TPC + scintillation
- energy resolution $\sigma_{\rm E}$ = 2%
- expected bkg only by $\beta\beta$ -2 ν

Goal: 5y sensitivity (1 ton 80% i.e. Xe): $T_{1/2} > 2 \ 10^{27}$ y (<m> ~ 25-30 meV)

Parallel activities:

EXO-200:

a LXe detector without Ba tagging using 200 kg of Xe enriched to 80% in 136Xe with ~150 meV sensitivity to Majorana masses

Ba-tagging R&D:

- Transfer from LXe to ion trap
- Directly tag in LXe volume

High pressure GXe detector R&D:

- Energy resolution and readout scheme
- Tracking: pressure and light gas mixes
- Ba tagging in gas

EXO-200

Intermediate Prototype without Barium Tagging

- TPC Vessel fully machined at Stanford under 7 m.w.e shielding; E-beam welding used for all but final weld to minimize introduction of radioactive background
- 200 kg enr. Xe (80% in 136Xe)
- Vessel complete, welded to door
- Half detectors almost complete
- (APDs, cables under assembly)
- Detector at WIPP: lead shielding, Xe plumbing almost complete, cryogenics tests in progress

Schedule:

- engineering run Summer 09
- physics run Fall 09
- First 2nu measurement 2010
- Onu 3-5 years

EXO-200 @ WIPP

SNO: One million pieces transported down in the 9 ft x 12 ft x 9 ft mine cage and re-assembled under ultra-clean conditions. Every worker takes a shower and wears clean, lint-free clothing.

SNO

Over 70,000 Showers to date and counting

VIVAN AN IMAN SA

SNO+

SNO+: SNO filled with liquid scintillator

A liquid scintillator detector has poor energy resolution

Huge quantities of isotope (high statistics) and low backgrounds however help compensate

- source in-source out capability
- large, homogeneous liquid detector leads to well-defined background model
- possibly source in-source out capability
- using the technique that was developed originally for LENS and now also used for Gd-loaded scintillator
- SNO+ collaboration managed to load Nd into pseudocumene and in linear alkylbenzene (>1% concentration)
- with 1% Nd loading (natural Nd) a very good neutrinoless double beta decay sensitivity is predicted, but...

Nd loaded sintillator:

1% loading (Natural Nd) large light absorption by Nd
47 ± 6 pe/MeV (Monte Carlo)
0.1% loading (Isotopically enriched to 56% Nd) acceptable
400 ± 21 pe/MeV (Monte Carlo)

SNO+: main engineering changes

Scint. Purification, AV Hold Down Otherwise, the existing detector, electronics etc. are unchanged.

SNO+

Sensitivity Limits (3 yrs):Natural Nd (56 kg isotope):

- $m_{\beta\beta} \sim 0.1 \text{ eV}$
- 500 kg enriched ¹⁵⁰Nd m_{ββ} ~ 0.04 eV

Funded by NSERC for final design/engineering and initial construction 2008-2010

End of 2010 \rightarrow ready for scintillator filling

SNO+ sensitivity

The D.B.D. Limit as a Function of Livetime

- Each SNO+ point represents a different MC "experiment" so as to reflect the statistical spread of derived limits.
- Ultimately, the ability to achieve such sensitivities in practise may rest on securing sufficient control of backgrounds

KAMLAND

¹³⁶Xe loaded LS

Phase I concept

KAMLAND merits

- Ultra low radioactivity environment based on ultra pure LS and
- 9m radius active shield: ${}^{38}U < 3.5 \ 10^{-18} \ g/g \ {}^{232}Th < 5.2 \ 10^{-17} \ g/g$
- No modification to the detector is necessary to accommodate DBD nuclei
- High sensitivity with low cost (~6M\$, budget secured) 60 meV in 1.5 years
- Reactor and geo- antineutrino observations continue
- High scalability (2nd phase)

Phase II 1000 kg ¹³⁶Xe, improvement of energy resolution with light concentrators and brighter LS (~30M\$)

25 meV in 5 years

R&D items

- Xenon loaded LS with the same density, luminosity, transparency
- 2.7~4 m φ Mini-balloon
- Xenon purification, storage, extraction etc
- Cosmogenic background rejection with dead-time free electronics

KAMLAND sensitivity

1st phase

KKDC claim, degenerated hierarchy test

Target sensitivity of the 2nd phase is ~25 meV with 5 years

KAMLAND timeline

Characterization of a Nd-loaded organic liquid scintillator for neutrinoless double beta decay search of $$^{150}\rm{Nd}$$ with a 10-ton scale detector

I. Barabanov^d, L. Bezrukov^d, C. Cattadori^{*,b}, N. Danilov^e, A. Di Vacri^a, A. Ianni^{*,a}, S. Nisi^a, F. Ortica^f, A. Romani^f, C. Salvo^a, O. Smirnov^c, E. Yanovich^d

^aINFN LNGS S.S. 17bis, km 18+910, 67010 Assergi, Italy ^bINFN Milano Bicocca, Italy ^cJoint Inst Nucl Res, Dubna 141980, Moscow Region Russia ^dINR-RAS Moscow, Russia ^eIPC-RAS, Moscow, Russia ^fDipartimento di Chimica, Università di Perugia and INFN, 06123 Perugia, Italy

The Detector: basic idea

CONCLUSIONS

Neutrinoless Double Beta Decay is a unique tool to study neutrino properties:

- Nature (Majorana/Dirac)
 - Absolute Mass Scale
 - Lepton Number Violation
 - CP Violation

NME calculations

Experimental situation:

- one claim of evidence for $\beta\beta(0\nu)$ of 76Ge
- new 2nd generation experiments (200 kg) under construction
- a number of well-established R&D for the near future program

Ultimate goal: $\langle m_{\nu} \rangle \sim 10 \text{ meV}$

- many proposals with different techniques and isotopes
- promote as many as possible experiments on different isotopes
- reduce uncertainties in nuclear matrix $F_{\rm N}$

CONCLUSIONS (2)

Exciting period for neutrino masses:

degeneracy is going to be probed

potential for excluding inverted hierarchy

