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I will not talk about. . .

Phenomenology of present oscillation experiments
TS, Tortola, Valle, 08; talk by A. deGouvea
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I will also not talk about. . .

the LSND and MiniBooNE puzzels

• recent studies indicate that not even
n sterile neutrinos (n ≥ 2) can provide a good fit to
the global data
Maltoni, Schwetz, 0705.0107; Karagiorgi et al, 0906.1997

• many VERY exotic models have been proposed,
many of them cannot explain ALL data
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I want to talk a little bit about. . .

Absolute neutrino mass phenomenology

• neutrinoless double beta decay |
∑

U 2
eimi|

CUORE, EXO, GERDA, Majorana, MOON, XMASS
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I want to talk a little bit about. . .

Absolute neutrino mass phenomenology

• neutrinoless double beta decay |
∑

U 2
eimi|

CUORE, EXO, GERDA, Majorana, MOON, XMASS
prove Majorana nature of neutrinos
Schechter, Valle, 1982; Takasugi, 1984
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I want to talk a little bit about. . .

Absolute neutrino mass phenomenology

• neutrinoless double beta decay |
∑

U 2
eimi|

CUORE, EXO, GERDA, Majorana, MOON, XMASS

• kinematical mass measurment
∑

|Uei|
2mi

KATRIN, MARE: 0.2 eV → degenerate mass region
new ideas required to go beyond this scale

• neutrino mass from cosmology
∑

mi

see talk of S. Hannestad

Ideally we would like to have signals from all three!
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From now on I focus on. . .

Phenomenology of future oscillation experiments

T. Schwetz, CERN, 1 Oct 2009 – p.5



3-flavour oscillations
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dominant oscillations are well described by effective
two-flavour oscillations

3-flavour effects are suppressed because
∆m2

21 ≪ |∆m2
31| and θ13 ≪ 1
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Upcoming oscillation experiments

and the race for θ13
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Upcoming oscillation experiments

Reactor experiments with near and far detectors:

Off-axis superbeams:

see talks this morning
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Upcoming oscillation experiments

baseline power FD mass channel
Reactor experiments with near and far detectors:

D-Chooz 1.05 km 8.6 GWth 8.3 t ν̄e → ν̄e

RENO 1.4 km 16.4 GWth 15.4 t ν̄e → ν̄e

Daya Bay 1.7 km 17.4 GWth 80 t ν̄e → ν̄e
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Upcoming oscillation experiments

baseline power FD mass channel
Reactor experiments with near and far detectors:

D-Chooz 1.05 km 8.6 GWth 8.3 t ν̄e → ν̄e

RENO 1.4 km 16.4 GWth 15.4 t ν̄e → ν̄e

Daya Bay 1.7 km 17.4 GWth 80 t ν̄e → ν̄e

Off-axis superbeams:

T2K 295 km 0.75 MW 22.5 kt νµ → νe, νµ

NOνA 812 km 0.7 MW 15 kt νµ → νe, νµ

see talks this morning
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Measuringθ13

two complementary approaches towards θ13:

• ν̄e → ν̄e disappearance reactor experiments with
near and far detectors: D-Chooz, Daya Bay, RENO
“clean” measurement of θ13:

Pee ≈ 1 − sin2 2θ13 sin2
∆m2

31
L

4Eν

+ O

(

∆m2
21

∆m2
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)2
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• LBL νµ → νe appearance exp.: T2K, NOνA
Pµe is a complicated function of various parameters
θ13 is correlated with other parameters
(CP-phase δ, sign of ∆m2

31
)
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The LBL appearance oscillation probability

Pµe ≃ sin2 2θ13 sin2 θ23
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anti-ν: δCP → −δCP, A → −A, Peµ: δCP → −δCP

other hierarchy: ∆ → −∆, A → −A, α̂ → −α̂
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Reactor vs Beam

assume sin2 2θ13 = 0.1, δ = π/2
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The race forθ13
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The ultimate goals ∗

• measure the value of δCP

establish CP violation
• determine the neutrino mass hierarchy

i.e., sgn(∆m2
31)

∗Slightly different “ultimate goals” than defined this morning by Andre deGouvea

T. Schwetz, CERN, 1 Oct 2009 – p.13



CP violation

In theory: measure Pνα→νβ
vs Pν̄α→ν̄β

In practice:
• cross section and fluxes are different for ν and ν̄

• matter effect is CP violating

or: measure Pνα→νβ
vs Pνβ→να

• need two completely different neutrino sources
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CP violation

In theory: measure Pνα→νβ
vs Pν̄α→ν̄β

In practice:
• cross section and fluxes are different for ν and ν̄

• matter effect is CP violating

or: measure Pνα→νβ
vs Pνβ→να

• need two completely different neutrino sources

Assume standard 3-flavour oscillations
perform a parametric fit to δ

Is there a model-independent way to establish CP violation
in the lepton sector?

T. Schwetz, CERN, 1 Oct 2009 – p.14



Determination of the mass hierarchy

the vacuum oscillation probability is invariant under

∆m2

31 → −∆m2

31 δCP → π − δCP

→ the key to resolve the hierarchy degeneracy is the
matter effect
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Determination of the mass hierarchy

the vacuum oscillation probability is invariant under

∆m2

31 → −∆m2

31 δCP → π − δCP

→ the key to resolve the hierarchy degeneracy is the
matter effect
resonance condition for νµ → νe oscillations:

±
2EV

∆m2
31

= cos 2θ13 ≈ 1

can be fulfilled for
neutrinos if ∆m2

31
> 0 (normal hierarchy)

anti-neutrinos if ∆m2
31

< 0 (inverted hierarchy)
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The size of the matter effect
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Mass hierarchy degeneracy and CPV

in matter the sign(∆m2
31

)-degenerate solution is located at

∆m2
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Even if the true δCP has a CP violating value, the degenerate
solution may be located at a CP conserving value
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Assume “large” θ13: can we measure CPV and the
mass hierarchy with the upcoming generation of
experiments?
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Assume “large” θ13: can we measure CPV and the
mass hierarchy with the upcoming generation of
experiments?

toy scenario:

• T2K: proton driver @ 2015: beam power 0.75 → 1.66 MW

• NOνA: project X @ 2018: beam power 0.7 → 2.3 MW

• combined data from T2K, NOνA, Daya Bay

• fully optimized ν/ν̄ switching between T2K and NOνA

T. Schwetz, CERN, 1 Oct 2009 – p.18



MH & CPV with T2K & NOvA & DayaB

Huber, Lindner, TS, Winter, 0907.1896
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MH & CPV with T2K & NOvA & DayaB

Huber, Lindner, TS, Winter, 0907.1896
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subsequent generation of LBL experiments

• superbeam upgardes (νµ → νe, νµ) + (ν̄µ → ν̄e, ν̄µ)

• beta beams (βB) (νe → νµ) + (ν̄e → ν̄µ)

• neutrino factory (NuFact ) (νe, νµ → νµ) + (ν̄e, ν̄µ → ν̄µ)
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subsequent generation of LBL experiments

• superbeam upgardes (νµ → νe, νµ) + (ν̄µ → ν̄e, ν̄µ)

T2HK: beam 0.77 → 4 MW, SK (22.5 kt) → HK (500 kt)
T2KK : second detector in Korea
NOνA: proton driver, second detector
WBB : wideband beam, Eν ∼ GeV, L ≃ 1300 km

CNGS-upgrades (beam upgrade, liquid Ar detector)
SPL: CERN to ∼Mt water Cerenkov at Frejus (130 km)

• beta beams (βB) (νe → νµ) + (ν̄e → ν̄µ)

low γ βB z.B. CERN-Frejus (Eν ∼ 0.4 GeV) or
high γ βB (longer BL), mono-energetic βB

• neutrino factory (NuFact ) (νe, νµ → νµ) + (ν̄e, ν̄µ → ν̄µ)

Eν ∼ 20 − 50 GeV, 1000 km . L . 7000 km

LENF: low energy NuFact, Eν ∼ 5 GeV, L ≃ 1300 km
T. Schwetz, CERN, 1 Oct 2009 – p.20



LBL oscillation probability
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CPV & mass hierarchy sensitivities

The ISS Physics Working Group report arxiv:0710.4947
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Systematics and the CPV measurment

In superbeam experiments

• we do not know the fluxes (∼ 10%)
• we do not know the cross sections (∼ 10%)

How can we do a precision experiment (. 1%)?

T. Schwetz, CERN, 1 Oct 2009 – p.23



On systematics in a superbeam experiment

Let’s use the near detector:

beam ND FD
φνµ

NND
µ ∝ φνµ

σνµ
φνµ

σνµ
Pνµ→νµ

φνe
NND

e ∝ φνe
σνe

φνµ
σνe

Pνµ→νe
+ φνe

σνe
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Systematics in superbeam experiments

For “large” θ13: rely on external information on σνe
/σνµ

,
cannot be obtained within the experiment itself.
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Some questions

• How precisely can (total) cross sections be measured?
Current Xsec experiments (MiniBooNE, MINERνA) are still
based on convential beams with large flux uncertainties

• How to measure νe cross sections?
Do we need a beta beam?

• Do we want to base our results on theoretical calculations of
the ratio σνe/σνµ?

T. Schwetz, CERN, 1 Oct 2009 – p.26



Some questions

At beta beam and NuFact the flux is known to good precision.

• How does it look like for a beta beam?
measure σνe at ND, but still need σνµ for appearance signal

• Combine a beta beam and a super beam?
cross correlations to eliminate cross section errors
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Some questions

At beta beam and NuFact the flux is known to good precision.

• How does it look like for a beta beam?
measure σνe at ND, but still need σνµ for appearance signal

• Combine a beta beam and a super beam?
cross correlations to eliminate cross section errors

• At NuFact we have νe, νµ, νe, νµ fluxes ⇒

all cross sections can be measured at ND! (except σντ )
very long baselines: think about matter density uncertainty

More dedicated studies along these lines are needed
Huber, Mezzetto, Schwetz, 0711.2950; Tang, Winter, 0903.3039

T. Schwetz, CERN, 1 Oct 2009 – p.27



Determination of the mass hierarchy

matter effect becomes large for BL & 1000 km

• sin2 2θ13 ∼ 10−2: LBL experiments with BL ≃ 1000 km
WBB or LENF: FNL to DUSEL, 1290 km; or T2KK , 1050 km

T. Schwetz, CERN, 1 Oct 2009 – p.28
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Determination of the mass hierarchy

matter effect becomes large for BL & 1000 km

• sin2 2θ13 ∼ 10−2: LBL experiments with BL ≃ 1000 km
WBB or LENF: FNL to DUSEL, 1290 km; or T2KK , 1050 km

• sin2 2θ13 ≪ 10−2: need BL of several 1000 km
NuFact (e.g., 3000 & 7000 km) or very LBL βB

• sin2 2θ13 & 2 × 10−2:

• Atmospheric neutrinos: Mt WC atm+LBL combination or
magnetized detector, µ only (INO experiment)

• Combination of superbeam and beta beam works even at
relatively short baselines (130 km)

T. Schwetz, CERN, 1 Oct 2009 – p.28



Mass hierarchy for largeθ13
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T. Schwetz, CERN, 1 Oct 2009 – p.29



Mass hierarchy for largeθ13
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CP+T-conjugated channels νµ → νe, ν̄µ → ν̄e, νe → νµ, ν̄e → ν̄µ

(SB+BB) provide sensitivity to MH Schwetz, hep-ph/0703279
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Comparison with 1290 km WBB
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SPL (130 km) and
T2HK (295 km)

include 5 Mt yr WC
atm neutrino data
NOνA∗:
100 kt LAr @ 820 km
3 yr ν, 3 yr ν̄ @ 1.1 MW

T2KK:
270 kt WC @ 295 & 1050 km
4 yr ν, 4 yr ν̄ @ 4 MW

WBB:
300 kt WC @ 1290 km
5yr ν @ 1 MW, 5yr ν̄ @ 2 MW
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The ultimate goals ∗

Overconstraining the system

∗According to Andre deGouvea’s definition

T. Schwetz, CERN, 1 Oct 2009 – p.31



Can we do a unitarity triangle measurment?

U =





Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3





Ue1U
∗
µ1 + Ue2U

∗
µ2 + Ue3U

∗
µ3 = 0

Have to measure absolute values of Uei, Uµi, and check whether
the area of the triange is consistent with the measurment of δ

Farzan, Smirnov, hep-ph/0201105
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Can we do a unitarity triangle measurment?

Ue1U
∗
µ1 + Ue2U

∗
µ2 + Ue3U

∗
µ3 = 0

Have to measure absolute values of Uei, Uµi, and check whether
the area of the triange is consistent with the measurment of δ

Farzan, Smirnov, hep-ph/0201105

• |Uei|: can be measured at reactors
need reactor experiment at 50-60 km

• |Uµi|: need accurate νµ disappearance exps.
I do not know of a realistic possibility to measure |Uµ1| and
|Uµ2| (need νµ disappearance at the “solar scale” ∆m2

21
→

very low Eν and long baselines)

T. Schwetz, CERN, 1 Oct 2009 – p.32



Summary
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Summary

• Upcomming reactor and superbeam experiments will reach
10−2 level for sin2 2θ13

• even with upgrades these expts most likely cannot say much
on CPV and MH ⇒ subsequent generation of LBL exp

T. Schwetz, CERN, 1 Oct 2009 – p.34



Summary

• Upcomming reactor and superbeam experiments will reach
10−2 level for sin2 2θ13

• even with upgrades these expts most likely cannot say much
on CPV and MH ⇒ subsequent generation of LBL exp

• appearance experiments have the intrinsic problem that not
all uncertainties cancel between near and far detectors

• for “large” θ13 attractive synergies between accelerator
neutrino experiments and huge mulit-purpose detectors for
astrophysics and proton-decay should be considered

T. Schwetz, CERN, 1 Oct 2009 – p.34



Summary

• Upcomming reactor and superbeam experiments will reach
10−2 level for sin2 2θ13

• even with upgrades these expts most likely cannot say much
on CPV and MH ⇒ subsequent generation of LBL exp

• appearance experiments have the intrinsic problem that not
all uncertainties cancel between near and far detectors

• for “large” θ13 attractive synergies between accelerator
neutrino experiments and huge mulit-purpose detectors for
astrophysics and proton-decay should be considered

Thank you for your attention!

T. Schwetz, CERN, 1 Oct 2009 – p.34
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