European Strategy for Future Neutrino Physics

Neutrino Phenomenology

Thomas Schwetz

Max-Planck-Institute for Nuclear Physics, Heidelberg

I will not talk about...

Phenomenology of present oscillation experiments

TS, Tortola, Valle, 08; talk by A. deGouvea

I will also not talk about...

the LSND and MiniBooNE puzzels

• recent studies indicate that not even n sterile neutrinos ($n \ge 2$) can provide a good fit to the global data

Maltoni, Schwetz, 0705.0107; Karagiorgi et al, 0906.1997

 many VERY exotic models have been proposed, many of them cannot explain ALL data

Absolute neutrino mass phenomenology

• neutrinoless double beta decay $|\sum U_{ei}^2 m_i|$ CUORE, EXO, GERDA, Majorana, MOON, XMASS

Absolute neutrino mass phenomenology

• neutrinoless double beta decay $|\sum U_{ei}^2 m_i|$ CUORE, EXO, GERDA, Majorana, MOON, XMASS prove Majorana nature of neutrinos

Schechter, Valle, 1982; Takasugi, 1984

Absolute neutrino mass phenomenology

- neutrinoless double beta decay $|\sum U_{ei}^2 m_i|$ CUORE, EXO, GERDA, Majorana, MOON, XMASS
- kinematical mass measurment $\sum |U_{ei}|^2 m_i$ KATRIN, MARE: 0.2 eV \rightarrow degenerate mass region new ideas required to go beyond this scale

Absolute neutrino mass phenomenology

- neutrinoless double beta decay $|\sum U_{ei}^2 m_i|$ CUORE, EXO, GERDA, Majorana, MOON, XMASS
- kinematical mass measurment $\sum |U_{ei}|^2 m_i$ KATRIN, MARE: 0.2 eV \rightarrow degenerate mass region new ideas required to go beyond this scale
- neutrino mass from cosmology $\sum m_i$ see talk of S. Hannestad

Ideally we would like to have signals from all three!

From now on I focus on...

Phenomenology of future oscillation experiments

3-flavour oscillations

dominant oscillations are well described by effective two-flavour oscillations

3-flavour effects are suppressed because

$$\Delta m^2_{21} \ll |\Delta m^2_{31}|$$
 and $heta_{13} \ll 1$

3-flavour oscillations

- search for θ_{13}
- CP violation in neutrino oscillations
- mass hierarchy $sign(\Delta m_{31}^2)$

Upcoming oscillation experiments and the race for θ_{13}

Upcoming oscillation experiments

Reactor experiments with near and far detectors:

Off-axis superbeams:

see talks this morning

Upcoming oscillation experiments

	baseline	power	FD mass	channel		
Reactor experiments with near and far detectors:						
D-Chooz	$1.05\mathrm{km}$	$8.6\mathrm{GW_{th}}$	$8.3\mathrm{t}$	$\bar{\nu}_e \rightarrow \bar{\nu}_e$		
RENO	$1.4\mathrm{km}$	$16.4\mathrm{GW_{th}}$	$15.4\mathrm{t}$	$\bar{\nu}_e ightarrow \bar{\nu}_e$		
Daya Bay	$1.7\mathrm{km}$	$17.4\mathrm{GW_{th}}$	80 t	$\bar{\nu}_e \rightarrow \bar{\nu}_e$		
Off-axis superbeams:						

see talks this morning

Upcoming oscillation experiments

	baseline	power	FD mass	channel		
Reactor experiments with near and far detectors:						
D-Chooz	$1.05\mathrm{km}$	$8.6\mathrm{GW_{th}}$	$8.3\mathrm{t}$	$\bar{\nu}_e ightarrow \bar{\nu}_e$		
RENO	$1.4\mathrm{km}$	$16.4\mathrm{GW_{th}}$	$15.4\mathrm{t}$	$\bar{\nu}_e \rightarrow \bar{\nu}_e$		
Daya Bay	$1.7\mathrm{km}$	$17.4\mathrm{GW_{th}}$	80 t	$\bar{\nu}_e ightarrow \bar{\nu}_e$		
Off-axis superbeams:						
T2K	$295\mathrm{km}$	$0.75\mathrm{MW}$	$22.5\mathrm{kt}$	$ u_{\mu} ightarrow u_{e}, u_{\mu}$		
NO uA	$812\mathrm{km}$	$0.7\mathrm{MW}$	$15\mathrm{kt}$	$ u_{\mu} ightarrow u_{e}, u_{\mu}$		

see talks this morning

Measuring θ_{13}

two complementary approaches towards θ_{13} :

• $\bar{\nu}_e \rightarrow \bar{\nu}_e$ disappearance reactor experiments with near and far detectors: **D-Chooz**, **Daya Bay**, **RENO** "clean" measurement of θ_{13} :

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}} + \mathcal{O}\left(\frac{\Delta m_{21}^2}{\Delta m_{31}^2}\right)^2$$

Measuring θ_{13}

two complementary approaches towards θ_{13} :

• $\bar{\nu}_e \rightarrow \bar{\nu}_e$ disappearance reactor experiments with near and far detectors: **D-Chooz**, **Daya Bay**, **RENO** "clean" measurement of θ_{13} :

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}} + \mathcal{O}\left(\frac{\Delta m_{21}^2}{\Delta m_{31}^2}\right)^2$$

• LBL $\nu_{\mu} \rightarrow \nu_{e}$ appearance exp.: T2K, NO ν A $P_{\mu e}$ is a complicated function of various parameters θ_{13} is correlated with other parameters (CP-phase δ , sign of Δm_{31}^{2})

The LBL appearance oscillation probability

$$P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2 (1 - A)\Delta}{(1 - A)^2}$$

$$+ \sin 2\theta_{13} \hat{\alpha} \sin 2\theta_{23} \frac{\sin (1 - A)\Delta}{1 - A} \frac{\sin A\Delta}{A} \cos(\Delta + \delta_{CP})$$

$$+ \hat{\alpha}^2 \cos^2 \theta_{23} \frac{\sin^2 A\Delta}{A^2}$$

with

$$\Delta \equiv \frac{\Delta m_{31}^2 L}{4E_{\nu}} \,, \quad \hat{\alpha} \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sin 2\theta_{12} \,, \quad A \equiv \frac{2E_{\nu}V}{\Delta m_{31}^2}$$

anti- ν : $\delta_{\rm CP} \to -\delta_{\rm CP}$, $A \to -A$, $P_{e\mu}$: $\delta_{\rm CP} \to -\delta_{\rm CP}$ other hierarchy: $\Delta \to -\Delta$, $A \to -A$, $\hat{\alpha} \to -\hat{\alpha}$

Reactor vs Beam

assume $\sin^2 2\theta_{13} = 0.1$, $\delta = \pi/2$

The race for θ_{13}

Huber, Lindner, TS, Winter, 0907.1896

The ultimate goals*

- measure the value of δ_{CP} establish CP violation
- determine the neutrino mass hierarchy i.e., ${\rm sgn}(\Delta m_{31}^2)$

^{*}Slightly different "ultimate goals" than defined this morning by Andre deGouvea

CP violation

In theory: measure $P_{\nu_{\alpha} \to \nu_{\beta}}$ vs $P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}$ In practice:

- cross section and fluxes are different for ν and $\bar{\nu}$
- matter effect is CP violating

or: measure $P_{\nu_{\alpha} \to \nu_{\beta}}$ vs $P_{\nu_{\beta} \to \nu_{\alpha}}$

need two completely different neutrino sources

CP violation

In theory: measure $P_{\nu_{\alpha} \to \nu_{\beta}}$ vs $P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}$ In practice:

- cross section and fluxes are different for ν and $\bar{\nu}$
- matter effect is CP violating

or: measure $P_{\nu_{\alpha} \to \nu_{\beta}}$ vs $P_{\nu_{\beta} \to \nu_{\alpha}}$

need two completely different neutrino sources

Assume standard 3-flavour oscillations perform a parametric fit to δ

CP violation

In theory: measure $P_{\nu_{\alpha} \to \nu_{\beta}}$ vs $P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}$ In practice:

- cross section and fluxes are different for ν and $\bar{\nu}$
- matter effect is CP violating

or: measure $P_{\nu_{\alpha} \to \nu_{\beta}}$ vs $P_{\nu_{\beta} \to \nu_{\alpha}}$

need two completely different neutrino sources

Assume standard 3-flavour oscillations perform a parametric fit to δ

Is there a model-independent way to establish CP violation in the lepton sector?

Determination of the mass hierarchy

the vacuum oscillation probability is invariant under

$$\Delta m_{31}^2 \to -\Delta m_{31}^2$$
 $\delta_{\rm CP} \to \pi - \delta_{\rm CP}$

→ the key to resolve the hierarchy degeneracy is the matter effect

Determination of the mass hierarchy

the vacuum oscillation probability is invariant under

$$\Delta m_{31}^2 \to -\Delta m_{31}^2$$
 $\delta_{\rm CP} \to \pi - \delta_{\rm CP}$

→ the key to resolve the hierarchy degeneracy is the matter effect

resonance condition for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

$$\pm \frac{2EV}{\Delta m_{31}^2} = \cos 2\theta_{13} \approx 1$$

can be fulfilled for

neutrinos if $\Delta m^2_{31} > 0$ (normal hierarchy) anti-neutrinos if $\Delta m^2_{31} < 0$ (inverted hierarchy)

The size of the matter effect

$$A \equiv \left| \frac{2EV}{\Delta m_{31}^2} \right| \simeq 0.09 \left(\frac{E}{\text{GeV}} \right) \left(\frac{|\Delta m_{31}^2|}{2.5 \times 10^{-3} \text{ eV}^2} \right)^{-1}$$

for experiments at the 1st osc. max, $|\Delta m_{31}^2|L/2E \simeq \pi$, and

$$A \simeq 0.02 \left(\frac{L}{100 \,\mathrm{km}}\right)$$

need $L \gtrsim 1000$ km and $E_{\nu} \gtrsim 3$ GeV in order to reach the regime of strong matter effect $A \gtrsim 0.2$.

terms linear in A do not break the degeneracy \rightarrow have to be sensitive to higher order terms in A TS, hep-ph/0703279

Mass hierarchy degeneracy and CPV

in matter the sign(Δm_{31}^2)-degenerate solution is located at

$$\Delta m_{31}^2 \to -\Delta m_{31}^2$$
 $\delta_{\rm CP} \to \pi - \delta_{\rm CP} + \epsilon(A)$

Even if the true $\delta_{\rm CP}$ has a CP violating value, the degenerate solution may be located at a CP conserving value

ex.: $E_{\nu}=2.2~\text{GeV}$ L=812~km (NOvA)

MH degeneracy can destroy sensitivity to CPV

Assume "large" θ_{13} : can we measure CPV and the mass hierarchy with the upcoming generation of experiments?

Assume "large" θ_{13} : can we measure CPV and the mass hierarchy with the upcoming generation of experiments?

toy scenario:

- T2K: proton driver @ 2015: beam power $0.75 \rightarrow 1.66 \,\mathrm{MW}$
- NO ν A: project X @ 2018: beam power $0.7 \rightarrow 2.3 \,\mathrm{MW}$
- combined data from T2K, NO ν A, Daya Bay
- fully optimized $\nu/\bar{\nu}$ switching between T2K and NO ν A

MH & CPV with T2K & NOvA & DayaB

Huber, Lindner, TS, Winter, 0907.1896

MH & CPV with T2K & NOvA & DayaB

Huber, Lindner, TS, Winter, 0907.1896

• superbeam upgardes $(\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu}) + (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \bar{\nu}_{\mu})$

• beta beams (β B) $(\nu_e \rightarrow \nu_\mu) + (\bar{\nu}_e \rightarrow \bar{\nu}_\mu)$

• neutrino factory (NuFact) $(\nu_e, \nu_\mu \to \nu_\mu) + (\bar{\nu}_e, \bar{\nu}_\mu \to \bar{\nu}_\mu)$

• superbeam upgardes $(\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu}) + (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \bar{\nu}_{\mu})$

T2HK: beam $0.77 \rightarrow 4$ MW, SK $(22.5 \text{ kt}) \rightarrow \text{HK}$ (500 kt)

T2KK: second detector in Korea

 $NO\nu A$: proton driver, second detector

WBB: wideband beam, $E_{\nu} \sim {\rm GeV}, L \simeq 1300 \, {\rm km}$

CNGS-upgrades (beam upgrade, liquid Ar detector)

SPL: CERN to ~Mt water Cerenkov at Frejus (130 km)

• beta beams (etaB) $(
u_e
ightarrow
u_\mu) + (\bar{\nu}_e
ightarrow \bar{\nu}_\mu)$

• neutrino factory (NuFact) $(\nu_e, \nu_\mu \to \nu_\mu) + (\bar{\nu}_e, \bar{\nu}_\mu \to \bar{\nu}_\mu)$

• superbeam upgardes $(\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu}) + (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \bar{\nu}_{\mu})$

T2HK: beam $0.77 \rightarrow 4$ MW, SK $(22.5 \text{ kt}) \rightarrow \text{HK}$ (500 kt)

T2KK: second detector in Korea

 $NO\nu A$: proton driver, second detector

WBB: wideband beam, $E_{\nu} \sim {\rm GeV}, L \simeq 1300 \, {\rm km}$

CNGS-upgrades (beam upgrade, liquid Ar detector)

SPL: CERN to ~Mt water Cerenkov at Frejus (130 km)

- beta beams (β B) $(\nu_e \to \nu_\mu) + (\bar{\nu}_e \to \bar{\nu}_\mu)$ low γ β B z.B. CERN-Frejus $(E_\nu \sim 0.4\,\mathrm{GeV})$ or high γ β B (longer BL), mono-energetic β B
- neutrino factory (NuFact) $(\nu_e, \nu_\mu \to \nu_\mu) + (\bar{\nu}_e, \bar{\nu}_\mu \to \bar{\nu}_\mu)$

• superbeam upgardes $(\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu}) + (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \bar{\nu}_{\mu})$

T2HK: beam $0.77 \rightarrow 4$ MW, SK $(22.5 \text{ kt}) \rightarrow \text{HK} (500 \text{ kt})$

T2KK: second detector in Korea

 $NO\nu A$: proton driver, second detector

WBB: wideband beam, $E_{\nu} \sim {\rm GeV}, L \simeq 1300 \, {\rm km}$

CNGS-upgrades (beam upgrade, liquid Ar detector)

SPL: CERN to ~Mt water Cerenkov at Frejus (130 km)

- beta beams (β B) $(\nu_e \rightarrow \nu_\mu) + (\bar{\nu}_e \rightarrow \bar{\nu}_\mu)$ low γ /B z.B. CERN-Frejus ($E_{\nu} \sim 0.4 \, \mathrm{GeV}$) or high $\gamma \beta B$ (longer BL), mono-energetic βB
- neutrino factory (NuFact) $(\nu_e, \nu_\mu \to \nu_\mu) + (\bar{\nu}_e, \bar{\nu}_\mu \to \bar{\nu}_\mu)$ $E_{\nu} \sim 20 - 50 \,\text{GeV}, \, 1000 \,\text{km} \lesssim L \lesssim 7000 \,\text{km}$

LENF: low energy NuFact, $E_{\nu} \sim 5 \, \mathrm{GeV}, \, L \simeq 1300 \, \mathrm{km}$

LBL oscillation probability

LBL oscillation probability

CPV & mass hierarchy sensitivities

The ISS Physics Working Group report arxiv:0710.4947

Systematics and the CPV measurment

In superbeam experiments

- we do not know the fluxes (\sim 10%)
- we do not know the cross sections (\sim 10%)

How can we do a precision experiment ($\lesssim 1\%$)?

On systematics in a superbeam experiment

Let's use the near detector:

beam	ND	FD
$\overline{\phi_{ u_{\mu}}}$	$N_{\mu}^{ m ND} \propto \phi_{ u_{\mu}} \sigma_{ u_{\mu}}$	$\overline{\phi_{ u_{\mu}}\sigma_{ u_{\mu}}P_{ u_{\mu} ightarrow u_{\mu}}}$
$\phi_{ u_e}$	$N_e^{ m ND} \propto \phi_{ u_e} \sigma_{ u_e}$	$\phi_{\nu_{\mu}}\sigma_{\nu_{e}}P_{\nu_{\mu}\to\nu_{e}} + \phi_{\nu_{e}}\sigma_{\nu_{e}}$

On systematics in a superbeam experiment

Let's use the near detector:

beam	ND	FD
$\overline{\phi_{ u_{\mu}}}$	$N_{\mu}^{ m ND} \propto \phi_{ u_{\mu}} \sigma_{ u_{\mu}}$	$\overline{\phi_{ u_{\mu}}\sigma_{ u_{\mu}}P_{ u_{\mu} ightarrow u_{\mu}}}$
$\phi_{ u_e}$		$\phi_{\nu_{\mu}}\sigma_{\nu_{e}}P_{\nu_{\mu}\to\nu_{e}} + \phi_{\nu_{e}}\sigma_{\nu_{e}}$

$$\begin{array}{ll} \text{dis.:} & f N_{\mu}^{\mathrm{ND}} \ P_{\nu_{\mu} \rightarrow \nu_{\mu}} \\ \text{app.:} & f N_{\mu}^{\mathrm{ND}} \frac{\sigma_{\nu_{e}}}{\sigma_{\nu_{\mu}}} P_{\nu_{\mu} \rightarrow \nu_{e}} + f N_{e}^{\mathrm{ND}} \end{array} \qquad f = \frac{M_{F}}{M_{N}} \frac{L_{N}^{2}}{L_{F}^{2}} \frac{\epsilon_{F}}{\epsilon_{N}}$$

On systematics in a superbeam experiment

Let's use the near detector:

beam	ND	FD
$\overline{\phi_{ u_{\mu}}}$	$N_{\mu_{}}^{ m ND} \propto \phi_{ u_{\mu}} \sigma_{ u_{\mu}}$	$\overline{\phi_{ u_{\mu}}\sigma_{ u_{\mu}}P_{ u_{\mu} ightarrow u_{\mu}}}$
$\phi_{ u_e}$	$N_e^{ m ND} \propto \phi_{ u_e} \sigma_{ u_e}$	$\phi_{\nu_{\mu}}\sigma_{\nu_{e}}P_{\nu_{\mu}\to\nu_{e}} + \phi_{\nu_{e}}\sigma_{\nu_{e}}$

$$\begin{array}{ll} \text{dis.:} & fN_{\mu}^{\mathrm{ND}} P_{\nu_{\mu} \rightarrow \nu_{\mu}} \\ \text{app.:} & fN_{\mu}^{\mathrm{ND}} \sigma_{\nu_{e}} P_{\nu_{\mu} \rightarrow \nu_{e}} + fN_{e}^{\mathrm{ND}} \end{array} \qquad f = \frac{M_{F}}{M_{N}} \frac{L_{N}^{2}}{L_{F}^{2}} \frac{\epsilon_{F}}{\epsilon_{N}}$$

no information on
$$\dfrac{\epsilon_F^e \cdot \sigma_{
u_e}}{\epsilon_N^\mu \cdot \sigma_{
u_u}}$$

Systematics in superbeam experiments

For "large" θ_{13} : rely on external information on $\sigma_{\nu_e}/\sigma_{\nu_\mu}$, cannot be obtained within the experiment itself.

- How precisely can (total) cross sections be measured?
 Current Xsec experiments (MiniBooNE, MINER vA) are still based on convential beams with large flux uncertainties
- How to measure ν_e cross sections? Do we need a beta beam?
- Do we want to base our results on theoretical calculations of the ratio $\sigma_{\nu_e}/\sigma_{\nu_u}$?

At beta beam and NuFact the flux is known to good precision.

- How does it look like for a beta beam? measure σ_{ν_e} at ND, but still need σ_{ν_μ} for appearance signal
- Combine a beta beam and a super beam?
 cross correlations to eliminate cross section errors

At beta beam and NuFact the flux is known to good precision.

- How does it look like for a beta beam? measure σ_{ν_e} at ND, but still need σ_{ν_μ} for appearance signal
- Combine a beta beam and a super beam?
 cross correlations to eliminate cross section errors
- At NuFact we have $\nu_e, \overline{\nu}_\mu, \overline{\nu}_e, \nu_\mu$ fluxes \Rightarrow all cross sections can be measured at ND! (except σ_{ν_τ}) very long baselines: think about matter density uncertainty

At beta beam and NuFact the flux is known to good precision.

- How does it look like for a beta beam? measure σ_{ν_e} at ND, but still need σ_{ν_μ} for appearance signal
- Combine a beta beam and a super beam?
 cross correlations to eliminate cross section errors
- At NuFact we have $\nu_e, \overline{\nu}_\mu, \overline{\nu}_e, \nu_\mu$ fluxes \Rightarrow all cross sections can be measured at ND! (except σ_{ν_τ}) very long baselines: think about matter density uncertainty

More dedicated studies along these lines are needed

Determination of the mass hierarchy

matter effect becomes large for BL $\gtrsim 1000~\mathrm{km}$

• $\sin^2 2\theta_{13} \sim 10^{-2}$: LBL experiments with BL $\simeq 1000$ km WBB or LENF: FNL to DUSEL, 1290 km; or T2KK, 1050 km

Determination of the mass hierarchy

matter effect becomes large for BL $\gtrsim 1000~\mathrm{km}$

- $\sin^2 2\theta_{13} \sim 10^{-2}$: LBL experiments with BL $\simeq 1000$ km WBB or LENF: FNL to DUSEL, 1290 km; or T2KK, 1050 km
- $\sin^2 2\theta_{13} \ll 10^{-2}$: need BL of several 1000 km NuFact (e.g., 3000 & 7000 km) or very LBL β B

Determination of the mass hierarchy

matter effect becomes large for BL $\gtrsim 1000~\mathrm{km}$

- $\sin^2 2\theta_{13} \sim 10^{-2}$: LBL experiments with BL $\simeq 1000$ km WBB or LENF: FNL to DUSEL, 1290 km; or T2KK, 1050 km
- $\sin^2 2\theta_{13} \ll 10^{-2}$: need BL of several 1000 km NuFact (e.g., 3000 & 7000 km) or very LBL β B
- $\sin^2 2\theta_{13} \gtrsim 2 \times 10^{-2}$:
 - Atmospheric neutrinos: Mt WC atm+LBL combination or magnetized detector, μ only (INO experiment)
 - Combination of superbeam and beta beam works even at relatively short baselines (130 km)

Mass hierarchy for large θ_{13}

Huber, Maltoni, TS, hep-ph/0501037; Campagne, Maltoni, Mezzetto, TS, hep-ph/0603172

synergy of LBL data and atmospheric neutrinos in (the same!)
Mt-scale multi-purpose detector (WC, LAr)

Mass hierarchy for large θ_{13}

CP+T-conjugated channels $\nu_{\mu} \to \nu_{e}, \bar{\nu}_{\mu} \to \bar{\nu}_{e}, \nu_{e} \to \nu_{\mu}, \bar{\nu}_{e} \to \bar{\nu}_{\mu}$ (SB+BB) provide sensitivity to MH schwetz, hep-ph/0703279

Comparison with 1290 km WBB

SPL (130 km) and T2HK (295 km) include 5 Mt yr WC atm neutrino data

$NO\nu A^*$:

100 kt LAr @ 820 km 3 yr ν , 3 yr $\bar{\nu}$ @ 1.1 MW

T2KK:

270 kt WC @ 295 & 1050 km 4 yr ν , 4 yr $\bar{\nu}$ @ 4 MW

WBB:

300 kt WC @ 1290 km 5yr ν @ 1 MW, 5yr $\bar{\nu}$ @ 2 MW

The ultimate goals* Overconstraining the system

^{*}According to Andre deGouvea's definition

Can we do a unitarity triangle measurment?

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* = 0$$

Have to measure absolute values of $U_{ei}, U_{\mu i}$, and check whether the area of the triange is consistent with the measurment of δ

Farzan, Smirnov, hep-ph/0201105

Can we do a unitarity triangle measurment?

$$U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* = 0$$

Have to measure absolute values of $U_{ei}, U_{\mu i}$, and check whether the area of the triange is consistent with the measurment of δ

Farzan, Smirnov, hep-ph/0201105

- $|U_{ei}|$: can be measured at reactors need reactor experiment at 50-60 km
- $|U_{\mu i}|$: need accurate ν_{μ} disappearance exps. I do not know of a realistic possibility to measure $|U_{\mu 1}|$ and $|U_{\mu 2}|$ (need ν_{μ} disappearance at the "solar scale" $\Delta m_{21}^2 \rightarrow {\rm very~low~} E_{\nu}$ and long baselines)

- Upcomming reactor and superbeam experiments will reach 10^{-2} level for $\sin^2 2\theta_{13}$

- Upcomming reactor and superbeam experiments will reach 10^{-2} level for $\sin^2 2\theta_{13}$
- appearance experiments have the intrinsic problem that not all uncertainties cancel between near and far detectors
- for "large" θ_{13} attractive synergies between accelerator neutrino experiments and huge mulit-purpose detectors for astrophysics and proton-decay should be considered

- Upcomming reactor and superbeam experiments will reach 10^{-2} level for $\sin^2 2\theta_{13}$
- appearance experiments have the intrinsic problem that not all uncertainties cancel between near and far detectors
- for "large" θ_{13} attractive synergies between accelerator neutrino experiments and huge mulit-purpose detectors for astrophysics and proton-decay should be considered

Thank you for your attention!