Neutrinos: an open window on Fundamental physics and the Evolution of the Universe

04 October 2009

European Strategy for Future Neutrino Physics CERN

Silvia Pascoli

IPPP – Durham University

The **Pioneering Age** of Neutrino Physics:

Neutrino hypothesis and its discovery (1930 – 1997)

The Golden Age of Neutrino Physics:

Evidence of neutrino oscillations (1998-2006)

Neutrino oscillations: neutrinos are chameleon particles.

They imply that neutrinos have mass and they mix! First evidence of physics beyond the Standard Model.

The Precision Era of Neutrinos:

Hunting for neutrino masses, mixing and their origin (2006-)

With the discovery of neutrino oscillations, a **new perspective** has opened on neutrino physics with compelling questions which await their answer:

- 1. What is the nature of neutrinos?
- 2. Is the charge/parity (CP) symmetry broken?
- 3. What are the values of neutrino masses and mixing?
- 4. Are there sterile neutrinos? Is the standard picture right?

A wide experimental program is going to address these questions in the future.

Neutrino Physics provides information on the fundamental laws of Nature and on the evolution of the Universe.

- Open window on the **Physics beyond the SM at scales**,
possibly, not otherwise reachable,
which is responsible for neutrino
masses.

- another perspective on the **problem of flavour**.

This information is **complementary** with the one which comes from flavour physics experiments and from colliders.

- Models of neutrino masses and mixing by G. Altarelli
- Neutrino masses at the TeV scale and LHC signatures by
 A. Strumia
- Discussion on theoretical aspects of neutrino mass generation and flavour problem by G. Ross
- Neutrino phenomenology by T. Schwetz
- Discussion by P. Hernandez
- Neutrino physics in the era of precision experiments by B.
 Gavela
- Discussion by S. T. Petcov
- The connection of neutrino physics with astrophysics and cosmology by S. Hannestad
- Discussion by A. de Rujula

Experiments

- Long baseline oscillations
- Non-acc. oscillation experiments
- Neutrinoless double beta decay
- Direct mass searches

Astroparticle physics Cosmology

- Constrain neutrino properties
- Study evolution of Universe

Theory

- Origin of neutrino masses BSM
- Flavour problem

The **Diamond Era** of Neutrinos:

much harder but much brighter than before.

Neutrinos are unique: they provide

- a new window on physics beyond the Standard Model;
- a different perspective on the flavour problem.

From a **theoretical point of view** we need to understand:

- 1. What is the origin of neutrino masses? Which is the energy scale at which they arise? What are the particles of the new theory and the new interactions?
- 2. What is the theory of flavour? Why do we have mixing? What is the connection, if any, with the quark sector?

In order to answer these questions, from a **phenomenological point of view**, we need to know:

- 1. What is the nature of neutrinos (Majorana vs Dirac)?
- 2. Is the charge/parity (CP) symmetry broken?
- 3. What are the values of neutrino masses (absolute mass scale and the type of mass hierarchy)? and mixing with precision(theta13, theta23)?
- 4. Are there sterile neutrinos? Is the standard picture correct (NSI, violation of unitarity...)?