Detector session Summary

Talks by:

- H. Aihara
- S. Centro
- Y. Declais
- A. Marchionni
- M. Messier
- T. Nakaya
- J. K. Nelson
- N. Spooner

Dario Autiero

IPNL, Lyon

Anselmo Cervera

IFIC, Valencia

European Strategy for Future Neutrino Physics

CERN, 3 October 2009

Introduction

Introduction

Underground sites N. Spooner

Photodetectors T. Nakaya

	Area	Gain	Voltag	Noise or	QE or	В-	Exp.	Comm
	(cm ²)	Gu.	e (V)	Dark Current	PDE (%)	field	220.	ercial
20" PMT	2000	1E7	~2000	~10kHz	~20	×	Super-K	0
High QE PMT	~500	1E7	~2000	\sim 5kHz	30~40	×	IceCube	0
13" HAPD	~800	1E5	18k	~PMT	>~25	×	R&D	Δ
Gas PMT	~900	1E6	~2000	<pmt< td=""><td>~20</td><td>Δ</td><td>R&D</td><td>×</td></pmt<>	~20	Δ	R&D	×
LAPD			???			Δ	R&D	×
MA-PMT	0.1 imes 256	1E6	~1000	<1kHz	10~20	×	Many exp.	0
MA-MCP- PMT	0.1× 64	1E6	~2500	<1kHz	10~20	0		0
APD	0.2 imes 32	~100	~300	<3000e	70~80	0	NOvA	0
PPD (MPPC,)	~0.1	1E6	<100	~1MHz	30~45	0	T2K ND280	0
MC-HAPD	0.3× 144	1E5	8k	~1µA	~25	0	R&D	Δ

Electronics S. Centro

Magnetised Iron calorimeters

- Performance
 - ~10⁻⁴ charge mid-id seems possible in MINOS
 - Need test beam to understand
 - * Charge mis-id
 - * Shower profiles and angular resolution
- Need to reduce threshold (4 ⇒ 2 GeV), less charge mid-id
 - better segmentation, higher B field (+20% feasible)
- Shape of scintillators:
 - Space resolution (triangular) vs light yield (rectangular)
- Cost: ~230 M\$ for 100 Kton
 - Driven by scintillators, PD and electronics
- No intermediate step needed

Totally Active Scintillating Detectors

- NOvA (the ~perfect prototype) under construction
- TASD motivated by the LENF (<5 GeV)
- Performance:
 - Electron charge study (need test beam !!!)
 - Is statistical tau appearance possible?
- Cost: NOvA = 145 M\$, TASD ~ 6xNOvA
 - Driven by scintillator, PD and electronics
 - Solid (6-10 \$/Kg) vs liquid (~3 \$/Kg)
- Feasibility: R&D on magnet
- Synergies: Limited by mass. To be studied
- No intermediate step needed

20 Kton mass = 1.33xNOvA 6.7 M channels = 20xNOvA

Liquid Argon TPCs

• Efforts in US, Japan and Europe

GLACIER = 150 x ICARUS T600

- Important achievements:
 - Double phase readout, purity, magnetic field, etc
- Critical R&D items:
 - Long drift distances, purity, tanks
 - Magnetisation for NF
- Performance:
 - Need to complete MC studies for a NF
 - Need test beam: to be proposed in 2010 (6 m³)
- At least one intermediate step needed
- Important synergies with non accelerator physics

1Kton

Large Water Cerenkov detectors

- Performance:
 - high energy showers ?
- Feasible !! Main R&D items
 - Cavern, liner and PD support structure
 - Water purification
- Cost: ~700 M\$ for HK incl. cavern
- Cost drivers: Photodetectors (65% of instrumentation cost)
 - Important developments in HAPDs (ready by 2013)
- No intermediate step needed
 - Caveat: if HAPDs, need to test them at some large scale
- Well known synergies with non accelerator physics

10-20 x SK

R&D planning

- MC simulations: EUROnu for near, MIND and WC.
- Technical R&D: missing in Europe, except for LAr
- Prototyping: missing for MIND and TASD. More for LAr
- Dedicated test beams: missing
- Intermediate steps

R&D planning

- MC simulations: EUROnu for near, MIND and WC.
- Technical R&D: missing in Europe, except for LAr
- Prototyping: missing for MIND and TASD. More for LAr
- Dedicated test beams: missing
- Intermediate steps

wish

The role of CERN

- EU FP projects and networks are very useful...
- But more support from CERN would be very welcomed:
 - Technical R&D: electronics, PD, scintillators, LAr, ...
 - Test beams
 - R&D followup

The role of CERN

- EU FP projects and networks are very useful...
- But more support from CERN would be very welcomed:
 - Technical R&D: electronics, PD, scintillators, LAr, ...
 - Test beams
 - R&D followup

TEST BEAMS AT CERN FOR DETECTOR R&D

- SPS North Area
- □ H2, H4, H8 : 10 ÷ 400(450) GeV/c
 - H8 : attenuated proton beam
 - H2 and H8 : have a VLE branch → beams 1-9 GeV/c
- □ H6 10-200 GeV/c
- Particle types: electrons, hadrons, muons
- □ Intensity : max 1÷2 × 10⁸ particles/spill
 - □ Flat top: 4÷9 sec
 - □ Cycle: 16.8 ÷49s

Courtesy of I. Efthymiopoulos (CERN)

The role of CERN

- EU FP projects and networks are very useful...
- But more support from CERN would be very welcomed:
 - Technical R&D: electronics, PD, scintillators, LAr, ...
 - Test beams
 - R&D followup
 example for LHC
 detector R&D

Detector Research and Development Committee (1990-1995)

R&D projects and proposals

```
RD-1 (P1)
Scintillating fibre calorimetry at the LHC.

RD-2 (P3)
Proposal to study a tracking/preshower detector for the LHC.

RD-3 (P5)
Liquid argon calorimetry with LHC-performance specifications.

RD-4 (P6)
Study of liquid argon dopants for LHC hadron calorimetry.

RD-5 (P7)
Study of muon triggers and momentum reconstruction in a strong magnetic field for a muon detector at LHC.

RD-6 (P8)
Integrated high-rate transition radiation detector and tracking chamber for the LHC.

RD-7 (P4)
Proposal for Research and Development on a central tracking detector based on scintillating fibres.

RD-8 (P13)
Proposal to develop GaAs detectors for physics at the LHC.

RD-9 (P21)
A demonstrator analog signal processing circuit in a radiation hard SOI-CMOS.
```

TEST BEAMS AT CERN FOR DETECTOR R&D

- SPS North Area
- □ H2, H4, H8 : 10 ÷ 400(450) GeV/c
 - H8 : attenuated proton beam
 - H2 and H8 : have a VLE branch → beams 1-9 GeV/c
- □ H6 10-200 GeV/c
- Particle types: electrons, hadrons, muons
- □ Intensity : max 1÷2 × 10⁸ particles/spill
 - □ Flat top: 4÷9 sec
 - □ Cycle : 16.8 ÷49s

Courtesy of I. Efthymiopoulos (CERN)