# European Strategy For FUTURE NEUTRINO PHYSICS

Neutrinoless Double-beta Decay

Introduction to the detectors session

Superbeams Beta beams Neutrino factory

> Neutrino Astrophysics

Neutrino Oscillations Detector Development

PS2 / SPL

Yves Déclais Université Lyon1 CNRS/IN2P3/IPNL

Neutrino Mass

#### Foreword:

- new generation of reactor experiment are being built following the detector concept used in the CHOOZ experiment (Th. Lasserre this workshop)
- · in this session emphasis is given to detectors which can be used with a neutrino beam
  - > Magnetized Iron calorimeter
  - > Fully active plastic & liquid scintillator
  - > Liquid Argon TPC
  - > Water Cerenkov



"define the optimal neutrino programme based on the information available in around 2012 for precision neutrino experiments to commence data taking around 2020"

#### **Outline**

- 1. Landscape of the neutrino program in around 2012
- 2. What are the possible scenarios for running in 2020
- 3. Proposed comparison tables for detectors
- 4. Organizational aspects

# What could be known in around 2012 for the 3rd mixing:

# 1. Reactors ( $\overline{v_e}$ disappearance):

 $Sin^2(2\theta_{13})$ , 90% CL

Double Chooz sensitivity :

~5 10-2

Daya-Bay will be starting data taking

# 2. Accelerators ( $v_e$ appearance)

- T2K could have integrated 750 kw x 22.5 kton
  - $\rightarrow$  sensitivity (normal hierarchy, integrated over  $\delta_{cp}$ )

~2 10-2

- MINOS & OPERA cannot compete
- NOvA built and NUMI being upgraded

#### Whatever a positive or negative result will appear we will need:

- to validate the result with more statistics and new experimental data
- upgrade an existing facility or build a new one (intensity frontier) equipped with new massive detectors

to disentangle mass hierarchy and  $\delta cp$  for large  $Sin^22\theta_{13}$ 

#### OR

to push away the limits beyond the sensitivity reached in around 2016

## What could be known in around 2016:

**1. Reactors** (anti Nue disappearance):

Sin²(2θ<sub>13</sub>), 90% CI

- Double Chooz sensitivity :
- Assuming very low background

Daya-Bay

- (to be proven experimentally)

#### 2. Accelerators

(  $v_e$  appearance, normal hierarchy, integrated over  $\delta cp$  )

- T2K could have integrated 750 kw x 22.5 kton x 5 years
  - → sensitivity

~6 10-3

- NOvA with NuMI upgrade (250 → 700kw)
  - → sensitivity

~1 10-2

New precision experiments should reach a sensitivity ≤ 1 10<sup>-3</sup>

#### What consequence if a positive result is then appearing:

- this result will have to be validated with more sensitive experiments
- disentangling mass hierarchy and  $\delta_{cp}$  will require new facilities  $\beta$  beam  $\leftrightarrow$  NuFactory
  - ➤ high power proton driver can be the front end of such a facility
  - > can we use the new planned detectors with such a facility

#### What could be known in around 2016:

As quoted during the introduction session:

- 1. Reactors (a
- 2. Accelerato
  - - NOvA v

- Double > this sensitivity is given for 90% C.L.
  - What should be the accuracy reached before to take any decision :  $3\sigma$ ,  $4\sigma$ ,  $5\sigma$ ?
- ( v<sub>e</sub> appeara ➤ Such an important result should be over
  - T2K co constraint: how many independent results would be needed?
  - Hard to believe that such a decision could be

taken before the end of the 2020's

Sin²(2θ<sub>13</sub>), 90% CL

~3 10<sup>-2</sup>

~1 10-2

~6 10<sup>-3</sup>

~1 10-2

**h**ould reach a sensitivity  $\leq 1 \cdot 10^{-3}$ New precision experime

# What consequence if a positive state of the supposition of the supposi

- this result will have to be validated with more sensitive experiments
- disentangling mass hierarchy and  $\delta_{co}$  will require new facilities  $\beta$  beam  $\leftrightarrow$  NuFactory
  - > high power proton driver can be the front end of such a facility
  - can we use the new planned detectors with such a new facility

## Parameters for the next generation of LBL experiments

#### could start early in the 2020's

- Machines beyond the intensity frontier: 1÷3 MW proton source → x 2 ÷3
- Massive detectors: 100 ÷1000 kton
  - ➤ Water cerenkov 50 kton → 500 kton
  - ➤ Liquid Argon .6 kton → 100 kton
  - ➤ Magnetized Fe 5.4 kton → 50-100 kton
  - ➤ TASD 15 kton → 50 kton

Both are really challenging, especially for the detectors:

- > the main gain will be obtained in using massive detectors
- > are there enough resource (funding!) for vigorous R&D
  - → this session is mainly devoted to scrutinize these aspects

→ X ~

# Super Beam facilities planned/hoped in around 2020:

#### 1. JPARC (NP08 meeting, KEK road map):

- upgrade to 1.6 MW, 30 GeV protons
- Possible baselines (same beam line)
  - ➤ Kamioka 295 km, 2.5° off-axis, 2x270 kton Water Cerenkov
  - > Okinoshima 655 km, 0.8° off-axis, 100 kton LAr TPC
  - ➤ Korea 1000 km, 2.5° off-axis, 2x270 kton Water Cerenkov

#### 2. Fermi Lab : Project X

- New intense source: 2.3 MW, 120 GeV protons
- New beam line pointing to DUSEL: 1300 km
  - on-axis → broad band beam
- Detectors being studied:
  - ➤ Water Cerenkov : ≥ 3 x 100 kton (fiducial)
  - $\nearrow$  LAr TPC : 5 kton  $\rightarrow$  25 kton  $\rightarrow$  ≥25 kton

#### Both in favour of:

- ~ on-axis beam → broad band beam → spectrum shape analysis
- long baseline  $\rightarrow$  Mass hierarchy determination  $\rightarrow$  improves  $\delta_{cp}$  sensitivity

#### Super Beam facilities planned/hoped in around 2020 (cntd):

#### CERN

New injection chain for LHC: Linac4, LP-SPL, PS2

✓ SPS  $\rightarrow$  2.2 10<sup>20</sup> pot/year

→ refurbishing CNGS facility

✓ PS2 (nominal) :

✓ LP-SPL

Possible baselines

Any of LAGUNA sites:

| Name              | Туре        | Envisaged Depth (m.w.e) | Distance from CERN (km)     | Energy 1st<br>osc. max (GeV) |  |  |
|-------------------|-------------|-------------------------|-----------------------------|------------------------------|--|--|
| Fréjus (F)        | Road tunnel | $\simeq 4800$           | 130                         | 0.26                         |  |  |
| Canfranc (ES)     | Road tunnel | $\simeq 2100$           | 630                         | 1.27                         |  |  |
| Umbria (IT)       | Green field | $\simeq 1500$           | 665 ( $\simeq 1.0^{o} OA$ ) | 1.34                         |  |  |
| Sieroszowice (PL) | Mine        | $\simeq 2400$           | 950                         | 1.92                         |  |  |
| Boulby (UK)       | Mine        | $\simeq 2800$           | 1050                        | 2.12                         |  |  |
| Slanic (RO)       | Salt mine   | $\simeq 600$            | 1570                        | 3.18                         |  |  |
| Pyhasalmi (FI)    | Mine        | $\simeq 4000$           | 2300                        | 4.65                         |  |  |

Which baseline? Longer are favoured for mass hierarchy determination

Which detectors can cope with such a wide range of energy

~1MW

320 kW 120 kW



Can the road to the intensity frontier be opened at CERN in time?

HP-SPL & PS2++ Needed for being able to compete!

# **Performance table**

The facility and the baseline drives the energy range and resolution

|     |      |        | cha | anne | اعاد | facilities |      |              |             | features       |                    |            | perform      | nance |  |        |                 |
|-----|------|--------|-----|------|------|------------|------|--------------|-------------|----------------|--------------------|------------|--------------|-------|--|--------|-----------------|
| 200 |      | Erange | μ   | е    | т    | NF         | LENF | High γ<br>βB | Low γ<br>βB | off-axis<br>SB | Wide<br>band<br>SB | B<br>field | mass<br>Kton | nea   |  | Eresol | Eff<br>&<br>bkg |
|     | MIND |        |     |      |      |            |      |              |             |                |                    |            |              | 1     |  |        | 1               |
|     | TASD |        |     |      |      |            |      |              |             |                |                    |            |              |       |  |        |                 |
|     | LAr  |        |     |      |      |            |      |              |             |                |                    |            |              |       |  |        |                 |
|     | wc   |        |     |      |      |            |      |              |             |                |                    |            |              |       |  |        |                 |
|     | wc   |        |     |      |      |            |      |              |             |                |                    |            |              |       |  |        |                 |

NF = Neutrino factories
LENF = Low energy neutrino factory
High γ βB = High gamma beta beam
Low γ βB = Low gamma beta beam
Off-axis SB = Off-axis Super Beam
Wide band SB = Wide band Super Beam

Is a small scale dtector (wrt far detector) valuable for efficiency and background study

# Synergies table beam composition study European contribution Xsection measurements to a program Pid studies in Japan or in US background studies near detector Interplay with program in experimental sites synergies with astroparticle physics other regions MIND TASD

Non accelerator physics:

- proton decay
- atmospheric neutrinos
- SuperNovae

• ...

LAr

WC

Depth constraint wrt:

- induced background
  - → correlated with Astroparticle synergy
- data rate induced by cosmic rays

# Cost feasibility table

|      | cost/Kton | cost<br>driver | feasibility<br>driver | key R&D point | requirements on site |
|------|-----------|----------------|-----------------------|---------------|----------------------|
| MIND |           |                |                       |               |                      |
| TASD |           |                |                       |               |                      |
| LAr  |           |                |                       |               |                      |
| wc   |           |                |                       |               |                      |

|      | How to use<br>existing<br>detectors to<br>understand<br>performance | Required test<br>beam<br>measurements to<br>understand<br>performance | R&D<br>towards<br>cost<br>reduction | R&D<br>towards<br>technological<br>challenges | Intermediate steps<br>towards full scale<br>detector | Expertise in<br>Europe | Possible R&D<br>activities<br>at CERN |
|------|---------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------|---------------------------------------|
| MIND |                                                                     |                                                                       |                                     |                                               |                                                      |                        |                                       |
| TASD |                                                                     |                                                                       |                                     |                                               |                                                      |                        |                                       |
| LAr  |                                                                     |                                                                       |                                     |                                               |                                                      |                        |                                       |
| wc   |                                                                     |                                                                       |                                     |                                               |                                                      |                        |                                       |

# « To begin the process of establishing a roadmap for a coherent European participation in future Neutrino Physics »

Since the year 2000 many initiatives have been developed in Europe and at CERN:

Non accelerator physics oriented

#### **ApPEC** (2001)

Astropicle Physics European Coordination Group of 13 national funding agencies

#### **ASPERA** (2006)

Astroparticle ERA-NET
Network of government agencies
for coordinating and funding
national research efforts in Astroparticle Physics

#### LAGUNA

Design of a new infrastructure in Europe to host very large volume new instrument Accelerator physics oriented

ISS

report published

#### EuroNu

FP7 design study High Intensity v Oscillation Facility in Europe

#### WP5

Т

**Detector Performance** 

#### **RECFA**

Coordination group For detector R&D

#### DevDet WP5

Coordination Office for neutrino detectors

- 1) Interplay between the 2 fields: should we maintain an 'interlock'
- 2) A lot of papers have been produced, it is time now to build up an energetic programme incorporating design, R&D and costings for the new generation of massive detectors: Can CERN foster such an activity as it has been done for the LHC detectors

#### **Conclusions**

- 1) Non zero value for θ13 will open a new field of research which can be compared to CP violation studies in the quark sector:
  - ➤ Long term program → be patient
  - > Precision neutrino experiments are very difficult
    - → be systematic
  - 2) New massive detectors are a key issue in this experimental field:
    - > we need it before constructing any new 'factory'
    - > Cern can play a role in detectors R&D as it was done for the LHC detectors
    - > will be valuable even if the future neutrino facility would be built outside Europe

Thanks for your attention

# **Spare slides**







# Measuring $\delta_{cp}$



Running the beam in positive and negative polarity

And comparing the results

Careful optimization is needed for the  $V_{\mu}$  contamination in the antineutrino run:

- increase with the proton energy
- · increase with the off-axis angle

|                    | n                          | eutrino run             |                                      | antineutrino run                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |  |  |
|--------------------|----------------------------|-------------------------|--------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|
| Distance/Angle     | $\nu_{\mu} CC$             | $\nu_e { m CC}$         | $(\nu_e + \overline{\nu}_e)$ /       | $\nu_{\mu}$ CC                        | $\nu_e { m CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\nu_e + \overline{\nu}_e)$ /       |  |  |
| 8                  | $(\overline{\nu}_{\mu}CC)$ | $(\overline{\nu}_e CC)$ | $(\nu_{\mu} + \overline{\nu}_{\mu})$ | $(\overline{\nu}_{\mu}CC)$            | $(\overline{\nu}_e CC)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(\nu_{\mu} + \overline{\nu}_{\mu})$ |  |  |
| C                  | m CNGS~10~GeV              | $7,400~{ m GeV}$        | V/c protons                          | $5 , 2.4 \times 10^{20} \ \mathbf{p}$ | ot/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ¥7.                                  |  |  |
| $665~\mathrm{km}$  | (a) 85                     |                         |                                      |                                       | -C M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000                                 |  |  |
| $1.3  \deg$        | 5733 (949)                 | 187 (59)                | 3.7 %                                | 2373 (2165)                           | 139 (75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.7 %                                |  |  |
| $665~\mathrm{km}$  | 10                         |                         |                                      |                                       | The control of the co |                                      |  |  |
| $0.85 \deg$        | 13648 (2213)               | 336 (112)               | 2.8 %                                | 5221 (5381)                           | 256 (139)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.7 %                                |  |  |
| CN                 | $XX NO\nu A$ ho            | rns , 400 (             | GeV/c prote                          | ons, $2.4 \times 10^{20}$             | pot/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |  |  |
| $1544~\mathrm{km}$ |                            |                         |                                      |                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |  |  |
| $0.25 \deg$        | 12181 (939)                | 96 (16)                 | 0.9 %                                | 2469 (5125)                           | 37 (39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 %                                |  |  |
| CI                 | VXX NOνA l                 | orns , 50               | GeV/c prot                           | ons, $3 \times 10^{21}$               | pot/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                   |  |  |
| $1544~\mathrm{km}$ | a 12 - 500                 |                         |                                      | 100                                   | 5-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000                                 |  |  |
| $0.25 \deg$        | 23600 (333)                | 160 (7)                 | 0.7 %                                | 1267 (6467)                           | 20 (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8 %                                |  |  |
| $2300~\mathrm{km}$ | 90 -000                    | 00. 00                  |                                      |                                       | 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |  |  |
| $0.25 \deg$        | 10667 (153)                | 73 (3)                  | 0.7 %                                | 573 (2933)                            | 7 (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8 %                                |  |  |