Large Water Cherenkov Detectors - Technical Issues -

Hiroaki Aihara University of Tokyo

Hyper-K continued

Energy coverage good for

$$\sim 200 {\rm MeV/c} < p_{\mu} < \sim 5 {\rm GeV/c}$$
 a few MeV/c < $p_e < 100 {\rm GeV/c}$

 2.5 m veto (outer) layer and
 2 m (from PMT surface) fiducial volume cut (equivalent to ~10 interaction length)
 reject fast neutrons from rocks to a negligible level.

4850 Level Conceptual Layout

MEMPHYS: MEgaton Mass PHYSics

a brief reminder

- ➤ water Cherenkov ("cheap and stable")
- total fiducial mass: 440 kt
- ➤ 3 cylindrical modules 65 x 65 m
 - size limited by light attenuation length $(\lambda \sim 80 \text{m})$ and pressure on PMTs
 - readout : ~3 x 81k 12" PMTs, 30% geom. cover
 - PMT R&D + detailed study on excavation
 @Fréjus existing & ongoing

4800m water equivalent

physics goals:

- proton decay searches
- superNovae core collapse and diffuse neutrinos
- precision measurement of neutrino oscillations with beams and solar neutrinos

Large Cavern Engineering

-Site specific-

FEM analysis of cavern displacement and stability

Crack-tensor analysis

- Anisotropic Young's Modulus considering joint distributions and Rock properties
- In-situ stress; isotropic (overburden=500m)
- cavern direction; North-South

Share stran > 0.3% in 2.5m

55mm displacement at central section

N-S cavern direction is better (due to E-W joint directions) Feasibility of the cavern with our best knowledge of the site⁷

Cavern R&D issues

- Further Site evaluation
 - Global geological mapping
 - Rock composition, position of faults
 - In situ rock mass properties
 - 3D Initial stress, Modulus of deformability, Young's Modulus
- Cavern's location, orientation, size, shape
 - Baseline design; letter box shape with (250m length x 2)
 - Detailed site evaluation is indispensable
 - Exploratory drilling should be done prior to finalizing cavern design
- Excavation method
 - Speedy and cost-effective method
 - Main haulage tunnel
 - Excavated waste rock disposal place? Reuse them?
 - Environmental assessment
 - Impact on construction schedule

Tank and Water

Liner types

- Self supporting Steel can (PSL)
- Segmented Concrete blocks (Laurenti)
- Self supporting concrete vessel (BNL)
- Slip formed concrete from top or bottom
- No liner (ie water barrier over shotcrete) (LBNL./UCB)
- Pressure balanced wall

DUSEL Studies

R&D issues

- Plastic liner (such as High Density Polyethylene)
 - Long term stability (mechanical strength, no creep?)
 - Interference with PMT support structure
 - Sequence of construction
- PMT support structure
- Water purification system
 - Exploring water quality, amount of available water
 - Minimize system and study attenuation length
 - Investigation of each material's emanation (no effect on water quality?)
 - Super-K water must be continuously purified. Similarly in IMB (plastic)
 and in SNO (acrylic)
- Possible to remove the segmentation wall (in Hyper-K design) without degrading the performance?

Photosensors and Electronics - Cost drivers and Schedule driver, too -

Cost Drivers

- Study done for NuSAG: 30% cavern, 70% instrumentation
- Instrumentation costs driven my PMT's, mounts, electronics
- Cost analysis for CD-0 is in progress

Instrumentation only ~70% of total cost

DUSEL study

Photo-sensors

- Cost: Take Hyper-K baseline as an example
 - \$350M(20inch PMT+ protective case) +
 \$30M(electronics)
 for 100,000 PMTs with the photo cathode coverage of 20%
- Cost reduction
 - fewer sensors
 - Simply reduce the photo cathode coverage from 40% to 20%
 - Higher quantum efficiency
 - Cheaper sensors
- Other issues
 - Size (20inch or smaller ?)
 - Pattern recognition, Logistics
 - Electronics in general
 - Protective case design or improve PMT pressureresistance

$p \rightarrow v + K^+, K^+ \rightarrow \pi^0 \pi^+$

SK-I (full density) forward-backward display

Faint π^+ signature; $Q\pi^+ \sim 60$ p.e.s even in SK-I (full PMT)

Criteria for SK-I (Phys.Rev.D72:052007,2005) 40 p.e. < Qback < 100 p.e.

40% photocathode coverage

Criteria for SK-II (preliminary) 20 p.e. < Qback < 50 p.e.

20% photocathode coverage

Preliminary result for $p \rightarrow vK^+$

SK-I (40%) vs SK-II (20%)

Prompt γ tagging

Full PMT density Half PMT density

• criteria $8 < \text{Number of } \gamma \text{HIT} < 60$ $4 < \text{Number of } \gamma \text{HIT} < 30$

• efficiency 7.2% 5.8%

• background 1.7+-0.4 events / Mton-years 1.7+-0.3 events / Mton-years

• backward light $(K^+ \rightarrow \pi^+ \pi^0)$

Full PMT density Half PMT density

• criteria 40 p.e. < Qback < 100 p.e. 20 p.e. < Qback < 50 p.e.

• efficiency 6.2% 4.8%

• background 4.7+-0.6 events / Mton-years 6.3+-0.7 events / Mton-years

even for half PMT density (SK-II)

- Small BG → vK+ search is feasible
- ε (SK-II)/ ε (SK-I)~80% not bad !

Reconstruction performance

mode	Period (coverage)	Detection efficiency
p→e++π ⁰	SK-I (40%)	44.6%
	SK-II (19%)	43.5%
p→μ++π ⁰	SK-I (40%)	35.5%
	SK-II (19%)	34.7%

Reconstruction performance is not degraded much for $p \rightarrow e^+(\mu^+)+\pi^0$ modes.

Excellent efficiency even with half PMT density

Ultra bialkali (UBA)

iva i i (iiii)

*1(")"288/*4545**67*8&()/*89/9%9;5

PMT

Hybrid (Avalanche) Photo Detector

Fewer components leading to cost reduction (1/2 - 1/4)

Operation Principle

6/23/2009

Digital HPD

Compact detector with Network + Power supply

Hamamatsu Photonics / Tokyo /KEK

Dynamic range : 1000 – 2000 p.e.

HPD vs PMT

	13inch HPD	13inch PMT (R8055)	20inch PMT (for SK)
Single Photon Time Resolution	190ps	1400ps	2300ps
Single Photon Energy Resolution	24%	70%	150%
Quantum efficiency	20%	20%	20%
Collection efficiency	97%	70%	70%
Power consumption	<<700mW	~700mW	~700mW
Gain	10 ⁵	10 ⁷	10 ⁷

With 5mm diameter back-illuminated avalanche diode

8inch 13inch

Large format HAPDs will be available from HPK by 2013

Digital Optical Module

IceCube Digital Optical Module

Waveforms, times digitized in each DOM

• 400 photoelectron/15ns

• 400ns/6.4ms time range

25 cm PMT 33 cm Benthosphere

European R&D on Readout System

PMm² philosophy for large detectors*:

Replace large PMTs (20") by groups of smaller ones (eg. 12"); originally proposed by Photonis Co. at NNN05

Modular construction

*: MEMPHYS ~ 3 x 81,000 PMTs; LENA & GLACIER ~ 20,000 ÷ 30,000 PMTs

Summary

- Feasible ? : Yes, definitely.
- Cost driver: Photosensors
 - For example, current estimate of the total construction cost of Hyper- K is \$700-750M.
 - Cost reduction efforts under way.
- Construction time scale: 7-10 years
- Need intermediate steps towards full scale ? :
 Do not think so.
 - Caveat: If we employ new photosensors, better experience a reasonably large system before get to full scale.

Physics Reach of Hyper Kamiokande

$p \rightarrow e^+\pi^0$ sensitivity for full and half PMT density

Ptot < 250 MeV/c (SK cut)
 BG=<u>2.2</u> ev/Mtonyrs, eff.=<u>44%</u>
 Ptot < 100 MeV/c (tighter cut)
 BG=<u>0.15</u>ev/Mtonyrs, eff.=<u>17.4%</u>

SK-I+SK-II 0.14Mtyr → 8.2x10³³ yrs @ 90% CL HK(0.5 Mt):10years 5.0Mtyr → ~10³⁵ yrs @ 90% CL

p_{->v}K⁺ sensitivity (half PMT)

Physics goals

- CPV with accelerator v (LBLE)
- proton decay searches
 - ~10³⁵ years for p \rightarrow e⁺ π^0
- precise meas. of atmospheric v
 - δ , θ ₁₃, mass hierarchy (if $\sin^2\!\theta$ ₁₃ >~0.01)
 - θ₂₃ octant
- <u>supernova v</u>
 - mechanism of stellar collapse
 - mass hierarchy?
- <u>solar v</u>
 - day-night flux (matter effect)
 - Hep ν

JPARC upgraded 1.66MW beam + 540kton Hyper-K (10years)

