

Synergies ...

R. Garoby - 3/10/2009

OUTLINE

- 1. Plans for future LHC injectors
- 2. Potential extensions for neutrinos
 - with the future LHC injectors:
 - "Conventional" v beams
 - with the "High Power" SPL:
 - Neutrino Factory
 - Low energy v "Super-beam"
 - β beams
- 3. Synergy with EURISOL
- 4. Final words

PLANS FOR FUTURE LHC INJECTORS

Motivation

1. Reliability ↑

The present accelerators are getting old (PS is 48 years old !) and they operate far beyond their initial design parameters

\Rightarrow need for new accelerators designed for the needs of SLHC

2. Performance \uparrow

Brightness N/ε^* of the beam in LHC must be increased beyond the capability of the present injectors to allow for phase 2 of the LHC upgrade. [Excessive incoherent space charge tune spreads ΔQ_{SC} at injection in the PSB and PS].

$$\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{XY}} \cdot \frac{R}{\beta \gamma^2}$$

with N_b : number of protons/bunch $\varepsilon_{X,Y}$: normalized transverse emittances R: mean radius of the accelerator $\beta\gamma$: classical relativistic parameters

\Rightarrow need to increase the injection energy in the synchrotrons

- Increased injection energy in the PSB from 50 to 160 MeV kinetic
- Need for 4 GeV injection energy in PS2 (PS successor) to allow for 2.2 times the ultimate beam brightness in sLHC
- Increased injection energy in the SPS from 25 to 50 GeV kinetic (partly because of space charge, but mostly to inject further from transition energy and to displace TMCI threshold)

Description

PS2 parameters

PS2 goals:

- to provide the beam brightness required by all sLHC options
- to improve SPS operation in fixed target mode

ິ	Reason	Physical parameter	Value
	Space charge PS2	Injection energy (kinetic)	4 GeV
Ď	SPS improvement	Ejection energy (kinetic)	50 GeV
	LHC	Transverse normalized 1 sigma emittances at ejection for LHC	3π mm.mrad
	LHC	Longitudinal emittance/bunch with 25 ns bunch spacing at ejection	0.35 eVs
n	2.2 imes ultimate brightness for	Nb of protons / bunch with 25 ns bunch spacing	4×10 ¹¹
	LHC (includes 10% loss)	at ejection for LHC (total 168 bunches)	(6.7×10^{13})
2	Flux for SPS / PS2 fixed	Nb of protons / bunch with 25 ns bunch spacing	6×10 ¹¹
	target physics	(total)	$(\sim 1 \times 10^{14})$
Ē	Possible bunch spacings in LHC	Size (ratio PS2/SPS)	15/77
	(25, 50 & 75 ns)	Circumference	1346.4 m
		h _{RF} for 25 ns (resp. 50 or 75 ns) bunch spacing	180 (resp. 90 or 60)
	Flux for SPS / PS2 fixed target +	Cycling period to 50 GeV (case of no injection	2.4 s
	LHC filling time	flat porch)	

PS2 injector

Requirements of PS2 on its injector:

Reason	Physical parameter	Value
Space charge	Injection energy (kinetic)	4 GeV
Twice the ultimate brightness	Nb of protons per PS2 cycle for LHC	6.7×10 ¹³
+ 20 % margin for beam loss		1/
SPS / PS2 fixed target physics	Nb of protons per PS2 cycle for	1.1×10^{14}
	PS2 / SPS fixed target physics	

Why an SPL as PS2 injector?

CERN-AB-2007-14 (PAF)

- H⁻ linac with charge exchange injection in the following synchrotron = proven solution for reliably reaching high beam performance,
- Superconducting accelerating structures allow for reaching 4 GeV with a single accelerator (minimum beam loss/irradiation + maximum reliability),
- An SPL provides a large potential of extension to adapt to future needs. Among the identified possibilities:
 - Radioactive ion beam facility (4 MW at ~ 2.5 GeV)
 - Proton driver for a neutrino factory (4 MW at 5 GeV) [design available]
 - ▶ e+/e- acceleration to ~20 GeV (using recirculation in the β=1 part of the SPL) for LHeC [preliminary study in progress]

Extensive synergy with other projects (ESS, EURISOL, SNS, ADS + XFEL, ILC

...) giving access to a large support base for R & D.

Site layout

Linac4 construction site - 5.5.2009

from M. Vretenar

Linac4 tunnel ("cut and cover" excavation) seen from highenergy side.

Final concrete works starting at low-energy side, excavation proceeding at high energy side.

Tunnel level -12 m, length 100 m.

Delivery of tunnel and surface equipment building end of 2010.

PSB and SPL connection area - 5.5.2009

from M. Vretenar

High-energy side of Linac4 tunnel, with beam dump chamber and connecting tunnel to the end of Linac2.

Implementation stage 1: Planning

project duration: ~ 6 years

LP-SPL Implementation stage 2: 0 m 110 m 186 m 427 m 0.16 GeV 0.73 GeV 1.4 GeV 4 GeV From Linac4 PS2 Ejection Medium β High β High β <u>De</u>bunchers cryomodule cryomodules cryomodules 2 SOLDE TT6 to 9 x 6 5 x 8 14 x 8 Length: ~430 m β =1 cavities β =0.65 cavities β =1 cavities H-**Ion species Output Energy** GeV 4 **Bunch Frequency** MHz 352.2 Max. Rep. Rate 2 Hz Max. Beam Pulse Length 0.9 ms Linac pulse current 20 mA × 10¹⁴ Number of ions per pulse 1.1 704.4 MHz **RF frequency Cooling temperature** Κ 2 Max. rep. rate for acc. structures & klystrons: **50** Hz

Examples of SPL developments [from HIPPI inside CARE (EU FP6)]

from G. Devanz (CEA) – HIPPI meeting Nov. 2007)

Goal of the SPL study (2008-2012)

from Note on 31/03/2009 (EDM5 Id 993472)

The goal of the SPL study is to submit to the CERN Council in mid-2012 a detailed Conceptual Design Report and a cost estimate.

For that purpose:

- > cavities must be built and tested for a reliable assessment of the achievable gradient,
- > a full size prototype cryomodule must be designed and assembled,
- the SM18 test place at CERN must be upgraded to allow for exercising multiple cavities in the prototype cryomodule at the nominal RF power,
- Civil Engineering and Integration must be studied, including safety and environment concerns.

Multiple partners are already collaborating or are planning to collaborate:

- Member states institutions [CEA, IN2P3, DESY, Rostock & Frankfurt Universities, STFC-DL, ASTEC-RHUL, Cockcroft Institute, Soltan Institute, ESS (Lund, Bilbao,...), ...] often with the support of the E.U., in the context of its FP7 programme ("sLHC" CNI-PP + "EuCARD" IA)
- Non-member states institutions [TRIUMF, Stony Brook/BNL, FNAL, SNS]

and more are in discussion (USA, China, India, Turkey, Hungary,...)

Implementation stage 2:

Planning

Construction of LP-SPL and PS2 will not interfere with the regular operation of Linac4 + PSB for physics. Similarly, beam commissioning of LP-SPL and PS2 will take place without interference with physics.

Possible stage 3: High I

- High Power SPL
- Upgrade of infrastructure (cooling water, electricity, cryogenics etc.)
- Replacement of klystron power supplies,
- Addition of 5 high β cryomodules to accelerate up to 5 GeV (π production for v Factory)?

SC-linac [160 MeV \rightarrow 4 (5?) GeV] with ejection at intermediate energy

R.G.

Plans for future LHC injectors

Possible stage 3:

High Power SPL

Beam characteristics of the main options

			Option 1	Option 2
20		Energy (GeV)	2.5 or 5	2.5 and 5
	Faster rep. rate ⇒ new power supplies, more cooling etc.	Beam power (MW)	2.25 MW (2.5 GeV) <u>or</u> 4.5 MW (5 GeV)	5 MW (2.5 GeV) <u>and</u> 4 MW (5 GeV)
L U		Rep. frequency (Hz)	50	50
nu		Protons/pulse (x 10 ¹⁴)	1.1	2 (2.5 GeV) + 1 (5 GeV)
		Av. Pulse current (mA)	20	40
ם		Pulse duration (ms)	0.9	1 (2.5 GeV) + 0.4 (5 GeV)
		2 × beam current \Rightarrow	2 × nb. of klystrons etc .	

POTENTIAL FOR NEUTRINOS: - WITH THE FUTURE LHC INJECTORS

Conventional v beam from PS2

PS2 beam characteristics

Dimensioned for the LHC upgrade Simple scaling to get the values for SPS in fixed target mode (with 5 turn ejection):

- 1. 10¹⁴ p/p at 50 GeV every 2.4 s (~330 kW)
- ~4· 10²⁰ pot/year (10⁷ s)
- Beam pulse duration: 4.2 μS

\Rightarrow A new design is needed if a higher flux is required.

Conventional v beam from the SPS (1/3)

Nominal CNGS

- 732 km baseline from CERN to Gran Sasso (Italy) [Elevation of 5.9°]
 - Far detectors: OPERA (1.21 kt), Icarus (600 t)
 - Commissioned in 2006, operational since 2008
 - Proton beam characteristics:
 - $2x \ 2.4 \cdot 10^{13} \text{ p/p}$ at 400 GeV every 6 s
 - 4.5· 10¹⁹ pot/year
 - 2 extractions separated by 50 ms
 - Beam pulse duration: 10.5 μs

Improvement with the new injectors?

Analysis of the maximum potential proton flux to CNGS

M. Meddahi and E. Shaposhnikova CERN AB-2007-013 (PAF)

Conventional v beam from the SPS (2/3)

Intensity limitation from the design values of the CNGS facility

Equipment	Protons per extraction	Protons per cycle	POT per year
Radiation Protection calculation and optimisation			Soil/concrete activation: 4.5 E19 Residual dose for intervention: 1.38 E20 Air/water activation: 7.6 E19
Target	3.5 E13 from dynamic stresses and assuming increased time between 2 extractions	1.4 E14 from target cooling	2 E20 from radiation damage
Horns	3.5 E13 from powering system: maximum of 2 extractions	7 E13 from water cooling system	1.38 E20 from air cooling system and mechanical fatigue lifetime (2 E7 pulses)
Shielding, Decay Tube, Hadron stop design			1.38 E20 from air/water cooling systems
Kicker system	3.5 E13 from ferrite heating, with MKE equipped with shielding stripes (TBC) from powering system: maximum of 2 extractions	1 E14 marginal, pending 2007 SPS beam measurements	
Instrumentation	3.5 E13 from dynamic range – Electronics system		

Conventional v beam from the SPS (3/3)

POT/year [10¹⁹] for 200 days of operation with 80% machine efficiency

	SPS cycle length	6	S	4.8	8 s
	Injection Energy	14 (GeV	26 (GeV
	Beam sharing Max SPS intensity @ 400GeV [x10 ¹³]	0.45	0.85	0.45 Perforrange flux f	0.85 orman e: 2 – or CN
Present injectors +	4.8	5	9.4		
machines improvement	5.7	5.9	11.1		
Future injectors (>2018) + SPS RF upgrade	7			9	917.1
Future injectors + new SPS RF system + CNGS new equipment design	10			12.9	24.5

POTENTIAL FOR NEUTRINOS: - WITH THE "HIGH POWER" SPL

3/10/2009

v FACTORY: SPL-based proton driver (1/4)

Table 1: Requirements for the neutrino factory proton driver.

Taken from the summary of 3rd ISS [4].

* Maximum bunch spacing ~50/(Nb-1) for the number of bunches Nb >2.

	Values	
Parameters	(basic/range)	Unit
Kinetic energy	10 / 5-15	GeV
Burst repetition rate	50 / -	Hz
Number of bunches per burst	4 / 1-6	
Bunch spacing	16 / 0.6-16 *	μS
Total duration of the burst	~50 / 40-60	μS
Bunch length	2 / 1-3	ns

SPL-based 5 GeV – 4 MW proton drivers have been designed [SPL + 2 fixed energy rings (accumulator & compressor)] which meet these requirements

References:

- Feasibility Study of Accumulator and Compressor for the 6-bunches SPL-based Proton Driver / M. <u>Aiba</u>, CERN-AB-2008-060
- A first analysis of 3-bunches and 1-bunch scenario for the SPL-based Proton Driver / M. Aiba, CERN-AB-Note-2008-048-BI
- Beam Stability in the SPL Proton Driver Accumulator for a Neutrino Factory at CERN / E. <u>Benedetto</u>, <u>http://nufact09.iit.edu/wg3/wg3_benedetto-splstability.ppt</u>, to be published
- SPL-based Proton Driver for a Neutrino Factory at CERN, M. Aiba, <u>E. Benedetto</u>, R. Garoby, M. Meddahi, poster nb.25 (this workshop)

26

v FACTORY: SPL-based proton driver (2/4)

v FACTORY: SPL-based proton driver (3/4)

from M. Aiba

v FACTORY: SPL-based proton driver (4/4)

	SPL for proton driver		Output beam		
Parameters		Values	Parameters	Values	
	Kinetic beam energy	5 GeV	Kinetic beam energy	5 GeV	
	Repetition rate	50 Hz	Repetition rate	50 Hz	
	Average current during	40 m A	No. of hunches per cycle	6	
	Beam power	40 MM	Bunch length (r m s)	~2 ns	
	Beam power		Bunch spacing	~12 us	
			Transverse emittance	12 μ3	
			(r.m.s., physical)	3 πmm-mrad	
	Accumulator		Compressor		
	Parameters	Values	Parameters	Values	
	Circumference	318.5 m	Circumference	314.2 m	
	Transition gamma	6.33	Transition gamma	2.3	
	RF voltage	-	RF voltage	4 MV	
	Harmonics number	-	Harmonic number	3	
	No. of arc cells	24	No. of arc cells	6	
	Super periodicity	2	Super periodicity	2	
	Nominal transverse tune	7.77/ 7.67	Nominal transverse tune	10.79/5.77	
	No. of turns for accum.	400	No. of turns for comp.	36	
	Maximum no. of bunches	6	Maximum no. of bunches	3	
	Main quadrupole		Main quadrupole		
	Bore radius	56 mm	Bore radius	148 mm	
	Field gradient	5.5 T/m	Field gradient	7.1 T/m	
	Magnetic length	1.2 m	Magnetic length	1.9 m	
	Main bending		Main bending		
	Full gap	103 mm	Full gap	125 mm	
	Full width	162 mm	Full width	379 mm	
	Field stength	1.7 T	Field strength	5.1 T	
	Magnetic length	1.5 m	Magnetic length	3 m	

from M. Aiba

29

Neutrino Factory at CERN

"Proof of principle" [obsolete v Factory design]

SPL-based Proton Driver for a Low Energy v Superbeam

SPL for proton driver		Output beam]
Parameters	Values	Parameters	Values	
Kinetic beam energy	5 GeV	Kinetic beau	$\overline{\forall}$	-
Repetition rate	50 Hz	Repetit Only the	accumi	lator
Average current during			accum	Jiator
the burst	40 mA	is need	led for a	
Beam power	4 MVV			1011
			v superb	beam
		(rms physic		
C		(1.11.5., physical)		ſ
Accumulator		Compressor		
Parameters	Values	Parameters	Values	
Circumference	318.5 m	Circumference	314.2 m	
Transition gamma	6.33	Transition gamma	2.3	
RF voltage	-	RF voltage	4 MV	
Harmonics number	-	Harmonic number	3	
No. of arc cells	24	No. of arc cells	6	
Super periodicity	2	Super periodicity	2	
Nominal transverse tune	7.77/ 7.67	Nominal transverse tune	10.79/5.77	
No. of turns for accum.	400	No. of turns for comp	36	
Maximum no. of bunches	6	Maximum no. of bunches	3	
Main quadrupole		Main guadrupole		
Bore radius	56 mm	Bore radius	148 mm	
Field gradient	5.5 T/m	Field gradient	7.1 T/m	
Magnetic length	1.2 m	Magnetic length	1.9 m	
Main bending		Main bending		
Full gap	103 mm	Full gap	125 mm	
Full width	162 mm	Full width	379 mm	
Field stength	1.7 T	Field strength	5.1 T	
Magnetic length	1.5 m	viagnetic length	3 m	

SPL-based Proton Driver for a β Beam Facility

ISOL production method at 1-2 GeV (200 kW)-

[Studied within EURISOL Design Study (FP6)]

Close to LP-SPL capability

Data from E. Wildner's and T. Stora's talks

lon	Production rate (estimate)	Production scheme	Missing factor
⁶ He	2-3×10 ¹³ /s	1-2 GeV proton @ 200 kW - with converter	ОК
¹⁸ Ne	< 8×10 ¹¹ /s	1-2 GeV proton @ 200 kW - without converter Alternative scheme with ~ protons to be studied contribution by T. Sto	>20 70 MeV (see ra)

SYNERGY WITH EURISOL

EURISOL PRELIMINARY STAGE [ISOLDE AREA] (1/2)

EURISOL PRELIMINARY STAGE [ISOLDE AREA] (2/2)

European Strategy for Future Neutrino Physics – October 2009

<u>EURISOL</u>

Direct capability of the High Power SPL

FINAL WORDS

Concerning the future LHC injectors...

- There has been significant progress during the past years in the definition of CERN future proton accelerators for the needs of LHC. Detailed project proposals will be ready by mid-2012.
- Superconducting RF is a key technology for many future accelerator projects. It makes sense for CERN to be active in that field. It helps SPL development and it will reduce cost.
- A High Power SPL is of interest as a Proton Driver for EURISOL as well as for different types of Neutrino Facilities. The possibility to upgrade to an HP-SPL has therefore been preserved until now.

HOWEVER

- Schedule has shifted (level of resources + better understanding of Civil Engineering needs...).
- Numerous issues deserve special investigation to prepare for multi-MW proton drivers (Beam dynamics and hardware design for the accelerators, Design of target and target area...).
- The possibility to upgrade to high beam power will have a cost: approval by the CERN Council cannot be taken as granted.

Concerning v's...

- Safety and environmental issues will be important ingredients for any future Neutrino Facility (as well as for any future high energy Lepton Collider...).
- CERN involvement in future Neutrino Facilities is very small since ~2001.
- Neutrino Factories:
 - CERN involvement is especially low:
 - Except for a significant investment in the low energy front end (Linac4), only a limited effort has been made in the basic design of a proton driver
 - ~ Nothing on muon cooling, acceleration and storage
 - ~ Nothing on hardware development.
 - It is still time to investigate new options => need joint effort of accelerator physicists in close relation with hardware designers.
- Beta-beams: the fruitful link established during the EURISOL DS between Nuclear and Particle Physics has a lot to do with the presence of ISOLDE at CERN.

Recommendations

Neutrinos

- Need decision if CERN shall be involved in the study of future neutrino facilities.
- If "YES": need to study more subjects / more completely (e.g.: alternative options for muon front end in connection with hardware development, safety and environmental studies...) => need for a structured effort with more resources (especially if CERN is a potential host of a future facility).
- To save on resources: focus as soon as possible on the most promising type of facility.

CERN future accelerators

- Need for statement of interest in the study of the high power option.
- Prepare for the Council decision in 2012, where the cost of keeping the possibility of high beam power will be debated.
- It would be cheaper (and faster!) to build immediately for high beam power...

THANK YOU FOR YOUR ATTENTION!