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The  Neutrino Factory Concept
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The Key Technical Challenges

l Production of the muons
n Require a MW-class proton driver
n Pulsed beam on a high-Z target
n Capture in a 20-T Solenoidal field

l Production of a muon beam
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l Production of a muon beam
n Reduction of dE
n Phase Space Reduction (Cooling)

l Acceleration of the muon beam
n Must be rapid (τµ = 2.2µs at rest)



The International Design Study Baseline

Target/Capture
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The Neutrino Factory Payoff
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The Neutrino Factory Target Concept

Maximize Pion/Muon Production
l Soft-pion Production
l High-Z materials
l High Magnetic Field 

Meson Production - 16 GeV  p + W
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Meson Production - 16 GeV  p + W
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The MERIT  Experiment at CERN
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MERcury Intense Target



Profile of the Experiment

l 14 and 24 GeV proton beam
l Up to 30 x 1012 protons (TP) per 2.5µµµµs spill
l 1cm diameter Hg Jet
l Hg Jet/proton beam off solenoid axis
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l Hg Jet/proton beam off solenoid axis
n Hg Jet 33 mrad to solenoid axis
n Proton beam 67 mrad to solenoid axis

l Test 50 Hz operations
n 20 m/s Hg Jet



Installed in the CERN TT2a Line

Before Mating
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After Mating and Tilting



Sectional view of the MERIT Experiment
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Optical Diagnostics

1 cm
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Viewport 2 
100µs/fras

Velocity Analysis

Viewport 3
500µs/fras

Disruption Analysis



Stabilization of Jet by High Magnet Field
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Jet velocities: 15 m/s
Substantial surface perturbations mitigated by high-magnetic field.

0T                                   5 T                                 10 T                              15 T

MHD simulations (W. Bo, SUNYSB):



Disruption Analysis
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Disruption lengths reduced with higher magnetic fields
Disruption thresholds increased  with higher magnetic fields



10TP, 10T V = 54 m/s

Velocity of Splash: Measurements at 24GeV
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20TP, 10T
t=0 t=0.175 ms t=0.375 mst=0.075 ms

t=0 t=0.175 ms t=0.375 mst=0.050 ms

V = 65 m/s



Filament Velocities
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Pump-Probe Studies

Test pion production by trailing  bunches after disruption of the 
mercury jet due to earlier bunches

At 14 GeV, the CERN PS can extract several bunches during one turn 
(pump), and then the remaining bunches at a later time (probe).

Pion production was monitored for both target-in and target-out events 
by a set of diamond diode detectors.
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PUMP: 12 bunches, 12 
×1012 protons

PROBE: 4 bunches, 
4×1012 protons

Diamond Detectors

Proton Beam

Hg Jet Target



Pump-Probe Data Analysis
Production Efficiency: Normalized Probe / Normalized Pump
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No loss of pion production for bunch delays of 40 and 350 µµµµs,
A 5% loss (2.5-σσσσ effect) of pion production for bunches delayed by 700 µµµµs.



Study with 4 Tp + 4 Tp at 14 GeV, 10 T

Single-turn extraction 4-Tp probe extracted on 4-Tp probe extracted 
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Single-turn extraction
èèèè 0 delay, 8 Tp

4-Tp probe extracted on 
subsequent turn
èèèè 3.2 µs delay

4-Tp probe extracted 
after 2nd full turn
èèèè 5.8 µs Delay

Threshold of disruption is > 4 Tp at 14 Gev, 10 T.

⇒⇒⇒⇒Target supports a 14-GeV, 4-Tp beam at 172 
kHz rep rate without disruption.

PUMP: 8 bunches, 
4 ×1012 protons

PROBE: 8 bunches, 
4×1012 protons



Key MERIT Results

l Jet surface instabilities reduced by high-magnetic fields
l Hg jet disruption mitigated by magnetic field

n 20 m/s operations allows for up to 70Hz operations
l 115kJ pulse containment demonstrated

8 MW capability demonstrated
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8 MW capability demonstrated
l Hg ejection velocities reduced by magnetic field
l Pion production remains viable upto 350µs after previous 
beam impact
l 170kHz operations possible for sub-disruption threshold 
beam intensities



The MERIT Bottom Line

The Neutrino Factory/Muon Collider 
target concept has been validated for 
4MW, 50Hz operations.

BUT
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BUT
We must now develop a target system 
which will support 4MW operations



MERIT and the IDS Baseline

Mean beam power 4 MW
Pulse repetition rate 50 Hz
Proton kinetic energy 5-10-15 GeV
Bunch duration at target 1-3 ns rms

NERIT

OK
OK
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Number of bunches per pulse 1-3
Separated bunch extraction delay ≥≥≥≥ 17 µs
Pulse duration: ≤ 40 µs

≥ 6 µs
≤ 350 µs

The IDS Proton Driver Baseline Parameters



IDS-NF Target Studies
Follow-up: Engineering study of a CW mercury 
loop + 20-T capture magnet

l Splash mitigation in the mercury beam dump.
l Possible drain of mercury out upstream end of 

magnets.
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magnets.
l Downstream beam window.
l Water-cooled tungsten-carbide shield of 

superconducting magnets.
l HTS fabrication of the superconducting magnets.
l Improved nozzle for delivery of Hg jet



Possible  Future Role for CERN

A natural CERN contribution would be 
participation in the design and testing of a 
prototypical neutrino factory target system 
with an intense proton beam.
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This would take explicit advantage of 
CERN’s expertise, capabilities  and facilities



Nozzle
Tube

SC-1
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SC-5
Window

Neutrino Factory Study 2 Target Concept

The Target  System
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A 4MW Target Hall

Harold G. Kirk
European Neutrino Physics Oct. 2-3, 2009

Phil Spampanato, ORNL



The Jet/Beam Dump Interaction
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T. Davonne, RAL



Shielding the Superconducting Coils

MARS 
Dose
Rate 
calculations
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calculations



MARS15 Study of the Hg Jet Target Geometry

Hg Jet
Proton Beam

θ

θCROSS

rJET
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Solenoid Axis

θBEAM

Previous results: Radius 5mm, θbeam =67mrad
Θcrossing = 33mrad



Optimized Meson Production
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Production of soft pions is 
most efficient  for a Hg 
target at        Ep ~ 6-8 GeV,   

Comparison of low-energy  
result with HARP data 
ongoing
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σ(π+−) /Ebeam, integrated over the measured phase space 
(different for the two groups).

HARP (p + Pb -> π+- X)            HARP-CDP  (p + Ta -> π+- X)

Jim Strait – NUFACT09
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σ peaks in range 4~7 GeV  => no dramatic low E drop-off           

30J. Strait - FermilabNuFact ‘09



HARP Cross-Sections x NF Capture Acceptance

HARP (p + Pb -> π+- X)           HARP-CDP  (p + Ta -> π+- X)
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HARP pion production cross-sections, weighted by the acceptance of the front-
end channel, and normalized to equal incident beam power, are relatively 
independent of beam energy.



Multiple Proton Beam Entry Points

p0
Proton Beam
Entry points Entry points

are 
asymmetric

Harold G. Kirk
Brookhaven National Laboratory

p8

p4
p12

jet

Proton beam entry points upstream of jet/beam crossing

asymmetric
due to the 
beam tilt in a 
strong 
magnetic field



Trajectory of the Proton Beam
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Multiple Proton Beam Entries

p11 A 10% swing
in meson 
production
efficiency
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p4

efficiency



Influence of β* of the Proton Beam
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β* = 10cm β* = 300cm



Meson Production vs β*

Meson 
Production 
loss ≤ 1% for 
β* ≥ 30cm
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Summary
l MERIT has successfully demonstrated the Neutrino 
Factory/Muon Collider target concept
lTarget studies are continuing within IDS-NF 
framework
l The infrastructure for a 4MW target system needs to 
be designed/engineered (this has generic value beyond 
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be designed/engineered (this has generic value beyond 
a Neutrino Factory specific target station)
l CERN participation in MERIT was crucial to its 
success.  CERN participation in the development of a 
4MW target system would be both welcome and 
beneficial to the entire accelerator physics community


