

# Towards an Infrared Photon Based Calibration of Super Cryogenic Dark Matter Search (SuperCDMS) Detectors

### 2017 CAP Congress – Queen's University

Supervisor: Prof. Wolfgang Rau Muad Ghaith May 29, 2017

#### **Introduction – Dark Matter**



- We know that dark matter exists from its effects on normal "luminous" matter.
  - It drives formation and dynamics of galaxy.
  - It interacts weakly with luminous matter.
- Examples for evidence for dark matter:
  - Galactic rotation curves
  - Gravitational lensing
- Dark matter makes up ~80 % of the matter in the universe, but we don't know yet what it is.





- SuperCDMS uses ultra-pure Ge and Si detectors to search for Weakly Interacting Massive Particles (WIMPs), a well motivated dark mater candidate particle.
- Two signal types of signals are recorded in SuperCDMS:
  - Phonon signal (lattice vibrations); main information about interaction energy.
  - Charge signal; allows the identification of interaction type (electron recoils or nuclear recoil).





- The detector used in this measurement is a typical interleaved Z-sensitive Ionization Phonon (iZIP) detector.
- It has 4 phonon channels interleaved with 2 charge channels on each of the two sides.



#### **Electric Field Configuration**



- Phonon channels are grounded while charge channels are biased.
- Field geometry: surface events produce charge signal only on one side, bulk event on both sides.
- Surface field ~ 1 mm.





- The new generation of SuperCDMS at SNOLAB will be sensitive to the lower WIMP mass scale (below ~10 GeV/c<sup>2</sup>). Hence, a lower background and lower energy threshold is needed.
- This in turn requires detector calibration at lower energy.
- Energy calibration for SuperCDMS is traditionally done with radioactive gamma sources. However, low energy gammas cannot penetrate the cryostat.
- Therefore we explore the use of IR photons for the calibration of the new SuperCDMS low-mass dark matter detectors.



- First test: use IR LEDs at room temperature; transmit light to detector via optical fiber.
- Use different wavelength LEDs (890 nm and 1550 nm), compare to 60 keV gammas (partial surface, partial bulk) from <sup>241</sup>Am.
- 890 nm: absorbed at surface (few μm); 1550 nm penetrates partially through the surface field (~1 mm).





- First test: use IR LEDs at room temperature; transmit light to detector via optical fiber.
- Use different wavelength LEDs (890 nm and 1550 nm), compare to 60 keV gammas (partial surface, partial bulk) from <sup>241</sup>Am.
- 890 nm: absorbed at surface (few μm); 1550 nm penetrates partially through the surface field (~1 mm).



8

### First attempt with internal (cold) LED



- Also tried to use internal <sup>1000</sup> LEDs (usually used to condition detectors).
- Can see LED induced pulses without heating detector.
- BUT: standard LED circuit interferes with charge readout.
- Success with internal LED and operational issues ascribed to the use of the fiber led to second experiment with internal LEDs.



#### **Measurements with Internal LEDs**



- 2 LEDs (wavelengths 1650 nm & 1550 nm)
- Stack of three detectors (Z1, Z2, Z3) mounted; two (Z1, Z3) used for measurements
- LEDs closer to Z3
- <sup>241</sup>Am source (60 keV) used to calibrate the energy scale





## IR photon penetration depth in Ge crystal



Band structure of germanium:

- 1550 nm (0.80 eV): produces near-surface events (very close to direct band gap)
- 1650 nm (0.75 eV) produces bulk interactions (energy well below direct band gap: low interaction probability)







#### **Infrared Photon - Energy Calibration**



- The x-axis represents the number of e/h pairs resulting from the interaction between photons and target atoms.
- The energy of the IR photons can be controlled by changing the LED operating voltage.



#### **Measure/Calibrate Low Energies**



- Lowest stable operation of LED produces ~10 keV in near detector (Z3)
- Much fewer photons reach Z1
- Measure ratio between Z1 and Z3 signal at high LED voltage
- Z1/Z3 ratio should be constant (probability for photon to reach Z1 depends on geometry)
- Infer energy in Z1 at lowest LED setting (though cannot be measured with present detector/electronics)





• The LED signal is relatively stable over time and measurements are repeatable within uncertainty

 $\rightarrow$  can use internal LED for stability control (faster and easier than use of radioactive source)

- Possible to tune the LED signal to a very low energy scale
  → promising as method for very low energy calibration
- Further tests needed to better understand the behavior of IR photons in our Ge detectors.



# THANK YOU

# Questions?



### **BACKUP SLIDES**

### IR photon penetration depth in Ge crystal



| TABLE 1. | Characteristics | of the | infrared | LEDS. |
|----------|-----------------|--------|----------|-------|
|----------|-----------------|--------|----------|-------|

| LED reference            | L8245 | L7850 | L7866 |
|--------------------------|-------|-------|-------|
| Emission wavelength (µm) | 1.65  | 1.45  | 1.30  |
| Photon energy (eV)       | 0.75  | 0.86  | 0.95  |
| Absorption length in Ge  | 1.7e5 | 400   | 1     |
| (µm) [9,10]              |       |       |       |

http://dx.doi.org.proxy.queensu.ca/10.1063/1.3292341