



## **Corrections to Signal Saturation on DEAP-3600**

Joe McLaughlin May 29, 2017 CAP Congress Queen's University





## Introduction To DEAP-3600







#### Dark matter Experiment using Argon Pulse-shape discrimination

McLaughlin



Dark matter Experiment using Argon Pulse-shape discrimination

• Interactions from Betas/Gammas favour the triplet excited state ( $\tau=1.6~\mu{
m s}$ ), nuclear recoils favour singlet state ( $\tau=7~{
m ns}$ )



<sup>39</sup>Ar Beta Event



#### McLaughlin



Dark matter Experiment using Argon Pulse-shape discrimination





Dark matter Experiment using Argon Pulse-shape discrimination

• Characterized by the quantity  $F_{prompt}$ 

$$F_{prompt} = \frac{\int_{-50ns}^{100ns} V(t)dt}{\int_{-50ns}^{15\mu s} V(t)dt}$$

 Electron recoil backgrounds such as <sup>39</sup>Ar beta decay have lower *F<sub>prompt</sub>* than nuclear recoils and are rejected



# Overview of Signal Saturation











# Front-End Electronics for DAQ in DEAP-3600

• Each PMT outputs data to two digitization channels:





# Front-End Electronics for DAQ in DEAP-3600





#### Alpha Nuclear Recoil Event: Raw HG Waveform





#### Alpha Nuclear Recoil Event: Raw LG Waveform





#### Alpha Nuclear Recoil Event: Raw LG Waveform





## Motivation

- Clipping is problematic for characterizing detector energy response and high energy surface backgrounds
- Goal is to determine clipped portion of waveforms while maintaining time precision
- Waveforms corrected via deconvolution of LG traces

# **Correction Algorithm**

McLaughlin



## Main Stages of The Algorithm



















# Artificial Clipping Analysis



- To test this idea, compute artificially clipped energies in complete HG pulses
- Compare to artificially clipped energy in processed LG counterparts





- To test this idea, compute artificially clipped energies in complete HG pulses
- Compare to artificially clipped energy in processed LG counterparts









<sup>27</sup> 



## Corrections to Alpha Events



- Clipping spreads Alpha populations into diagonal distributions
- Corrections alleviate most of the spreading, though further refinement of the method is ongoing

McLaughlin



## **Extra Slides**

McLaughlin





### Time Offsets



- Method 1: Find and list time difference between all combinations of the top 3 dark noise peaks in each waveform. The mode of this list is the true time difference
- Method 2: Perform correlation calculation, location of minimum is true time difference



## Time Offsets

Timing Offset Spread



• Histogram showing the distribution measured time differences using method 1 in 4 ns time bins

#### Queen's UNIVERSITY

## **Rescaling After Deconvolution**

- Time resolution restored after deconvolution, but waveform integrals in LG and HG channels still differ
- Want to show proportionality between HG, LG (raw), and LG (processed) waveforms

