Monitoring Beam Backgrounds at Belle II with Scintillator Detectors

Helena Pikhartova

Supervisor: Steven Robertson

McGill University

May 29, 2017

æ

イロト イヨト イヨト イヨト

Belle II Experiment Overview

- * B-factory experiment, planned start of operation at the end of 2018
- * International High Energy Physics experiment in Japan
- * Plan to achieve instantaneous luminosity of $L=8 \times 10^{35} cm^{-2} s^{-1}$

SuperKEKB

Belle II detector

Belle II Upgrade & Beam Background

Design parameters for the SuperKEKB operation compared to the KEKB design and achieved parameters:

Beam Parameters	KEKB achieved		SuperKEKB design	
	LER	HER	LER	HER
Energy [GeV]	3.5	8.0	4.0	7.01
Beam current - I [A]	1.64	1.19	3.6	2.62
Vertical beam-beam parameter - ξ_y	0.129	0.090	0.087	0.081
Beta function at interaction point - β_y^* [mm]	5.9	5.9	0.27	0.30
Vertical beam size at interaction point - σ_y^* [nm]	940	940	48	60
Horizontal beam size at interaction point - σ_{χ}^{*} [μ m]	147	170	10	10
Beam lifetime [min]	200	133	10	10
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.108		80	

The luminosity can be expressed as:

$$L = \frac{\gamma_{\pm}}{2 \textit{er}_{e}} (1 + \frac{\sigma_{y}^{*}}{\sigma_{x}^{*}}) (\frac{I_{\pm} \xi_{y\pm}}{\beta_{y}^{*}}) (\frac{R_{L}}{R_{\xi_{y\pm}}})$$

e = electron charge $\gamma = Lorentz factor$ $r_e = radius of electron$

R = reduction factor

With higher beam currents and smaller beam size, beam background will increase significantly.

Negative effects of beam background:

- * On detector: radiation damage, increased occupancy
- * On physics analyses: reduced signal to background ratio

Beam Background at Belle II

Interaction that produces occupancy in the detector that originates from a source other than a e^+e^- physics collision at the interaction point

Sources of background:

- Injection into storage rings
- Bending/focusing the beam
- * Intra-bunch effects

Types of background:

- Beam-Gas induced background (Beam-gas radiation, Touschek effect)
- Luminosity induced background (Radiative Bhabha)
- * Injection background

Belle II commissioning and background monitoring

Three phase of commissioning:

- * Phase 1 Commissioning of SuperKEKB, first turns (spring 2016)
- * Phase 2 Belle II detector without vertex detectors, first collisions (spring 2018)
- * Phase 3 Full Belle II detector operation (end of 2018)

The purpose of the commissioning is:

- * Identify all major sources of background
- * Predict radiation dose for Belle II detector components
- * Collect data to improve the accuracy of background simulations

Scintillation Array Beam Background Monitor

Array of detectors for monitoring beam background.

Location:

- Beam background monitors around QCS (final focusing quadrupole magnets and cryostat)
- Between 1 and 4 m from interaction point

Goals:

- Real time injection background
- Measurement of background hit rates
- * Luminosity monitoring

Scintillator Detectors

- The passage of charged particles generates light by fluorescence in the plastic scintillators
- Scintillation light collected by multi-pixel photon counters (MPPC)
 - Photon-counting device using multiple APD (avalanche photodiode) pixels operating in Geiger mode
- Installation of 40 detectors around the QCS

Production of scintillation light.

Scintillator detectors.

Readout of Scintillator Detectors

EASIROC NIM board. Callier, S., Taille, C. D., Martin-Chassard, G., & Raux, L. (2012). EASIROC, an Easy & Versatile ReadOut Device for SiPM. Physics Procedia, 37, 1569 – 1576. doi:10.1016/j.phpro.2012.02.486.

- * The EASIROC board reads out the scintillation monitors and provides the supply bias voltage
- Up to 64 MPPCs handled by one board

Planned readout path.

- 2 EASIROC modules (BWD/FWD) regions
- Cable length more than 30 m between scintillator sensor and DAQ room

Real-time monitoring in the control room, recorded by DAQ for offline analysis

Cabling and Attachment

* Final positions of scintillators with design of attachment

Material profile image of QCSs with scintillator positions.

Detail of scintillator

 \leftarrow X7 cross section of QCS with heavy metal shielding visible (yellow)

Simulation

- Belle II simulates beam background using Monte Carlo methods and the Geant4 toolkit
- * Possible to determine positions and energies of particles coming out of beam background events

Background loss distribution near interaction point:

Simulation of Scintillator Rates

- * Goal of simulation is to predict sensitivity to individual types of background
- Preliminary results of the simulated background rates for each scintillator sensor:

Background rate for each scintillator detector.

Rate as a function of position along the beam pipe.

* Data taking will provide scalar rates from each of the detectors

Schedule and Future Plans

***** Spring 2017:

- Completion of attachment design
- * Test installation of the monitors \rightarrow

***** Before start of Phase 2:

* Feedback setup for Belle II/SuperKEKB control rooms

* Installation

Conclusion

* Scintillator detectors

- * Beam background monitors
- * Near the interaction point of the Belle II detector
- * Will provide feedback to the detector and accelerator control rooms
 - * Live monitoring
 - * Allow adjustments of collimator settings while running

Thank you!