28 May 2017 to 2 June 2017
Queen's University
America/Toronto timezone
Welcome to the 2017 CAP Congress! / Bienvenue au congrès de l'ACP 2017!

Shape Coexistence in the Proton-Unbound Nucleus $^{177}$Au

29 May 2017, 16:30
30m
Botterell B147 (Queen's University)

Botterell B147

Queen's University

Invited Speaker / Conférencier invité Nuclear Physics / Physique nucléaire (DNP-DPN) M4-4 Nuclear Structure I (DNP) | Structure nucléaire I (DPN)

Speaker

Fuad Ali (Univerity of Guelph)

Description

Excited states of the proton-unbound nucleus $^{177}$Au have been populated following the $^{92}$Mo($^{88}$Sr,$ 2pn$) reaction in an experiment performed at the University of Jyv\"askyl\"a Accelerator Laboratory. Gamma rays detected in the JUROGAM spectrometer were correlated with the characteristic $\alpha$ decays of $^{177}$Au detected following a recoil implantation in the GREAT spectrometer. A large number of transitions ($\sim 60$ $\gamma$ rays) have been assigned unambiguously to $^{177}$Au and ordered into four collective band structures and other single-particle excitations.
Several intruder configurations formed by single-proton excitations across the $Z = 82$ shell gap have been established. These have been interpreted as $\pi i_{13/2}$, $\pi f_{7/2} \oplus h_{9/2}$ and $\pi h_{9/2}$ prolate configurations. It has been established that the $\pi i_{13/2}$ and $\pi f_{7/2} \oplus h_{9/2}$ bands have decay paths to both the positive-parity mixed (1/2$^{+} \oplus$ 3/2$^{+}$) ground state and the negative-parity 11/2$^-$ isomer, which is unusual in this mass region. Structures based on the coupling of the odd $\pi$ $h_{11/2}^{-1}$ proton hole to excitations of the $^{178}$Hg core have been established in the excitation level scheme. An oblate $\pi h_{11/2}^{-1}$ $\otimes$ $^{178}$Hg($2_{1}^{+}$) state and a prolate strongly coupled band based on the $\pi h_{11/2}^{-1}$ $\otimes$ $^{178}$Hg($0_{2}^{+}$) configuration have been identified. The decay paths from the strongly coupled band and the search for evidence of electric monopole decays are discussed.

Primary author

Fuad Ali (Univerity of Guelph)

Presentation materials