2017 CAP Congress / Congrès de l'ACP 2017

physiciens et physiciennes

Contribution ID: 1568

Type: Invited Speaker / Conférencier invité

Shape Coexistence in the Proton-Unbound Nucleus 177 Au

Monday, 29 May 2017 16:30 (30 minutes)

Excited states of the proton-unbound nucleus ¹⁷⁷Au have been populated following the ⁹²Mo(⁸⁸Sr,2pn) reaction in an experiment performed at the University of Jyv\"askyl\"a Accelerator Laboratory. Gamma rays detected in the JUROGAM spectrometer were correlated with the characteristic lpha decays of 177 Au detected following a recoil implantation in the GREAT spectrometer. A large number of transitions ($\sim 60 \gamma$ rays) have been assigned unambiguously to 177 Au and ordered into four collective band structures and other singleparticle excitations.

Several intruder configurations formed by single-proton excitations across the Z=82 shell gap have been established. These have been interpreted as $\pi i_{13/2}$, $\pi f_{7/2} \oplus h_{9/2}$ and $\pi h_{9/2}$ prolate configurations. It has been established that the $\pi i_{13/2}$ and $\pi f_{7/2} \oplus h_{9/2}$ bands have decay paths to both the positive-parity mixed (1/2⁺ \oplus $3/2^+$) ground state and the negative-parity $11/2^-$ isomer, which is unusual in this mass region. Structures based on the coupling of the odd π $h_{11/2}^{-1}$ proton hole to excitations of the 178 Hg core have been established in the excitation level scheme. An oblate $\pi h_{11/2}^{-1} \otimes {}^{178}{\rm Hg}(2_1^+)$ state and a prolate strongly coupled band based on the $\pi h_{11/2}^{-1}\otimes{}^{178}{
m Hg}(0_2^+)$ configuration have been identified. The decay paths from the strongly coupled band and the search for evidence of electric monopole decays are discussed.

Primary author: ALI, Fuad (Univerity of Guelph)

Presenter: ALI, Fuad (Univerity of Guelph)

Session Classification: M4-4 Nuclear Structure I (DNP) | Structure nucléaire I (DPN)

Track Classification: Nuclear Physics / Physique nucléaire (DNP-DPN)