β^+ asymmetry in spin-polarized 37K decay

- The most accurate A_β measurement
 Agrees with theory prediction

- Constraints on:
 Weak interaction changes within nuclei
 Non-SM lepton helicities:
 Left-right symmetric models.
 4-fermi contact Lorentz ‘scalar’, ‘tensor’

TRIumf Neutral Atom Trap collaboration:

S. Behling
B. Fenker
M. Mehlman
P. Shidling
D. Melconian

A. Gorelov
J.A. Behr
M.R. Pearson
Undergrad
E. Broatch

J. McNeil

Supported by NSERC, NRC through TRIUMF, Israel Science Foundation, DOE, State of Texas
Lepton helicity \rightarrow angular distribution

$^{37}\text{K} \rightarrow ^{37}\text{Ar} + \nu$

^{37}K

$^{-}$

This decay pattern needs non-S.M. chirality

$I=3/2 \rightarrow I=3/2$:

Leptons can’t increase nuclear spin any further
One experimental discovery of parity violation

Wu, Ambler, Hayward, Hopper, Hobson, PR 105 (1957) 1413

Dilution
Refrigerator
to spin-polarize

$$^{60}\text{Co} \rightarrow ^{60}\text{Ni} + \beta^- + \bar{\nu}$$

$$W[\theta] = 1 + PA\hat{I} \cdot \frac{\vec{p}_\beta}{E_\beta}$$

$$= 1 + A\frac{\nu}{c} \cos[\theta]$$

$$A_{\beta^-} \approx -1.0$$

Followup $$^{58}\text{Co} \rightarrow ^{58}\text{Fe} + \beta^+ + \nu$$

$$A_{\beta^+} > 0$$

Wauters 2010 PRC $A_{^{60}\text{Co}} = -1.014 \pm 0.020$ [SM -0.987 ± 0.009]
37K isobaric mirror decay: a ‘heavy neutron’?

Here A_β isn’t 1 or -1 or a clean fraction. There are 2 operators:

‘Fermi’ changes n to p

‘Gamow-Teller’ changes n to p and nucleon spin

τ, Q, and branch \Rightarrow decay strength $\mathcal{F}t$

We know the Fermi $\mathcal{F}t_0$ from the $0^+ \rightarrow 0^+$ decays, so from $\mathcal{F}t$ we can get the Gamow-Teller strength:

$$\mathcal{F}t \ (\text{Shidling PRC 2014}) \Rightarrow \rho = C_A M_{GT} / C_V M_F = 0.5768 \pm 0.0021$$

$\Rightarrow A_\beta [SM] = -0.5706 \pm 0.0007$

Main uncertainty is experimental branching ratio.
37K isobaric mirror decay: a ‘heavy neutron’

$\Rightarrow A_\beta[SM] = -0.5706 \pm 0.0007$

Dominant uncertainty is exp. branching ratio

1st-order recoil-order from E&M moments:

- Induced tensor $d_1 \approx 0$,
- Small $\mu \Rightarrow$ small weak magnetism

Recoil-order + Coulomb + finite-size corrections \Rightarrow $
\Delta A_\beta \approx -0.0028 \left(\frac{E_\beta}{E_0} \right)$
Holstein RMP 1975

Isospin mixing contributes 0.0004 uncertainty from shell model

DFT for isospin mixing has improved its functional

Using weighted average for δ_C would $\Rightarrow 0.0004 \rightarrow 0.0005$
TRIumf Neutral Atom trap at ISAC

$^{37}\text{K} \ A_\beta$

A_β physics

extras

j.a.behr triumf cap17

$^{37}\text{K} \ 8 \times 10^7 / \text{s}$

TiC target

1750°C

70 μA

protons

main TRIUMF cyclotron
‘world’s largest’

500 MeV H$^-$ (0.5 Tesla)
TRINAT lab: “tabletop experiment”

- **ISAC ion beam**
- **TRINA T lab**
- **“tabletop experiment”**
- **Detection trap 0.3 picoatmosphere**
- **Ring Laser**
- **Collection trap**
- **Beta detector**
- **Pb shielding**
- **CCD Camera**
- **Atom detector**
\(^{37}K \) decay geometry

- \(\beta \), recoil nucleus
- shakeoff \(e^- \) for TOF trigger

This decay pattern is helicity-forbidden if the \(\nu \) goes straight up, independent of Gamow-Teller/Fermi ratio.
Optical pumping and probing ^{37}K

Photoionize 1% in situ probe

$P_+ = +0.9913(8)$

$P_- = -0.9912(9)$

$\sigma \propto (1-P)$

Fenker NJP 2016
β^+ asymmetry 37K data

- Backscatter from scint agrees to \sim10%
Background

- 2.8×10^{-3} of events in main peak are background from non-trapped atoms
- Conservatively assume polarized between 0 and 100%.
 $\rightarrow A_\beta \times (1.0014 \pm 0.0014)$
- These will be removed by MCP position info when we increase to design E field
37K A_β+ Uncertainties

<table>
<thead>
<tr>
<th>Source $\times 10^{-4}$ [†: β scattering]</th>
<th>ΔA_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background (Correction 1.0014)</td>
<td>7</td>
</tr>
<tr>
<td>Trap Position</td>
<td>4</td>
</tr>
<tr>
<td>Trap Sail velocity</td>
<td>5</td>
</tr>
<tr>
<td>Trap Temperature & width</td>
<td>1</td>
</tr>
<tr>
<td>BB1 Radius†</td>
<td>4</td>
</tr>
<tr>
<td>BB1 Energy agreement</td>
<td>2</td>
</tr>
<tr>
<td>BB1 threshold</td>
<td>1</td>
</tr>
<tr>
<td>Scintillator threshold</td>
<td>0.3</td>
</tr>
<tr>
<td>GEANT4 physics list†</td>
<td>4</td>
</tr>
<tr>
<td>Shakeoff electron t.o.f. region</td>
<td>3</td>
</tr>
<tr>
<td>SiC mirror thickness†</td>
<td>1</td>
</tr>
<tr>
<td>Be window thickness†</td>
<td>0.9</td>
</tr>
<tr>
<td>Scintillator or summed†</td>
<td>1</td>
</tr>
<tr>
<td>Scintillator calibration</td>
<td>0.1</td>
</tr>
<tr>
<td>Total systematics</td>
<td>12</td>
</tr>
<tr>
<td>Statistics</td>
<td>13</td>
</tr>
<tr>
<td>Polarization</td>
<td>5</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>18</td>
</tr>
</tbody>
</table>

$A_\beta = -0.5707 \pm 0.0013 \text{ (stat)} \pm 0.0012 \text{ (syst)} \pm 0.0005 \text{ (pol)}$

$= -0.5707 \pm 0.0018$

$A_\beta[\text{SM}] = -0.5706 \pm 0.0007$

Better relative uncertainty than

19Ne -0.0360 ± 0.0008

[Calaprice 1975]

and neutron

0.1197 ± 0.0006

[PERKEO II PRL 2013, UCNA PRCr 2013]
Weak interaction: same strength, all nuclei?

\[A_\beta \Rightarrow GT/F \]

Then \(\mathcal{F}t \) of \(^{37}K \Rightarrow V_{ud} \)

- An isospin mixing test useful for
- \(0^+ \rightarrow 0^+ \) determination of \(V_{ud} \) i.e. \(\psi[n] \neq \psi[p] \)

- Salam and Strathdee
 Nature 1974: phase transitions at very high B fields could drive \(V_{ud} \rightarrow 1 \)

Hardy Towner PLB 1975 applied to the \(^{35}Ar A_\beta \) controversy.

\(^{19}Ne \) Broussard DNP 2016
Why the weak interaction is ‘weak’ at low energy

‘more massive virtual particles are created for shorter times’

Propagator+vertices:

\[T \propto \frac{G_X(-g^{\mu\nu} + p^\mu p^\nu / M_X^2)G_X}{p^2 - M_X^2} \quad p << M_X \]

\[T \propto \frac{G_X^2}{M_X^2} \Rightarrow \]

- **Decay rates** \(\propto \frac{G_X^2 G_X'^2}{M_X^4} \)
 or \(\propto \frac{G_X^2}{M_W^2} \frac{G_X G_X'}{M_X^2} \) if process interferes with W
 (couples to SM-handed \(\nu \))
 e.g. Fierz term \(\propto \frac{m}{E_\beta} \)

- **IF** \(G_X \sim \) electroweak coupling, then 0.1% sensitivity in angular correlations \(\rightarrow M_X \sim 6 \) or 30 \(M_W \)
Left-Right Symmetric model

Extra W' with heavier mass, couples to ν_R

Otherwise same coupling strength, so parity is a good symmetry at very high energy

$\delta \equiv (M_1/M_2)^2$

$M'_{W_R} > 352$ GeV 90%

37^K: $M'_{W_R} > 3.7$ TeV 90%

$\nu_\mu^R > \nu_\mu$ but LHC $M'_{W_R} > 3.7$ TeV 90%
\(g_R > g_L : \)

\[^{37}\text{K} \Rightarrow g_R \lesssim 7.7 \text{ at } 4 \text{ TeV} \]

(or \(g_R < 4 \), at 2 TeV but LHC7 2 TeV ‘bump’ had \(g \sim 0.5 \))

\[V_{ud}^R < V_{ud}^L \]

For \(M'_W < 70 \text{ GeV} \), nuclear \(\beta \) decay constrains \(V_{ud}^R \)
$A_\beta \ [E_\beta]$ agrees with S.M.

New interactions that make normal-helicity ν's 'interfere' with S.M. Fierz term $\propto \frac{m_\beta}{E_\beta}$

CMS PRD 91 92005

Bhattacharya PRD 94 054508 (2016) combined ATLAS, CMS:
future $A_{\text{recoil}} \propto A_\beta + B_\nu$

Technique demonstrated in ^{80}Rb Pitcairn PRC 2009

A_{recoil} depends on ρ; p dependence doesn’t

$37\text{K} A_\beta$ physics extras j.a.behr triumf cap17
Helicity-driven null in mirror decay

\[W(\theta_{\beta\nu i}) \approx 1 + A_{\beta\nu i} \cos(\theta_{\beta\nu i}) \]

\[A_{\beta\nu i} = \frac{a + PB - 2cT/3}{1 + PA} \]

For \(P = -1 \), \(A_{\beta\nu i} = 1 \), independent of \(M_{GT}/M_F \)

2014 data under analysis
TRIUMF Neutral Atom Trap: Near Future

We have measured the β asymmetry of 37K decay to be $A_\beta = -0.5707 \pm 0.0018$

Agrees with theory -0.5706 ± 0.0007, complements the best β decay measurements

We plan to measure $A_\beta[E_\beta]$ 3-5 x better, and A_{recoil} with sensitivity to ‘4-fermion contact’ interactions complementary to $\pi \rightarrow e\nu\gamma$, $\pi \rightarrow e\nu$, and $\text{LHC } p + p \rightarrow e + E_\perp$

We also plan a TRV $\beta\nu\gamma$ 3-momentum correlation, first of its type in 1st-generation particles
the Fierz term is ‘easier’ to constrain but has more competition.

For scalars coupling to wrong-chirality ν, we compete with our own $^{38mK} \beta-\nu$ Gorelov 2005.
Polarization Improvements

SYST $\times 10^{-4}$

<table>
<thead>
<tr>
<th></th>
<th>ΔP</th>
<th>ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^-</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>σ^+</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>σ^-</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>σ^+</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Initial T

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Global fit v. ave</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>S^out_3 Uncertainty</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Cloud temp</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Binning</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>B_z Uncertainty</td>
<td>0.5</td>
<td>3</td>
</tr>
</tbody>
</table>

Initial P

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Require $I_+ = I_-$</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total SYSTEMATIC</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>STATISTICS</td>
<td>7</td>
<td>21</td>
</tr>
</tbody>
</table>

$P(\sigma^+) = +0.9913(8)$ \hspace{1cm} $T(\sigma^+) = -0.9770(22)$

$P(\sigma^-) = -0.9912(9)$ \hspace{1cm} $T(\sigma^-) = -0.9761(27)$

- pellicle mirrors: less β^+ scattering
- define T by OP
- trim B gradients
- improve S_3 flipping and gradients
- add flipping of B_z
- higher-power photoionizing laser
- gentler RAC-MOT

Uncertainty $\propto (1-P)$
MSSM and β decay correlations

Profumo, Ramsey-Musolf, Tulin
PRD 75 075017 2017

$C_S + C'_S$ can be 0.001 in MSSM in 1-loop order including mixing

Include mixing of:
- left and right sfermions (this is where β decay can help; constraints are said to be few)
- sfamily mixing (already tightly constrained, e.g. by $\mu \rightarrow e \gamma$...)

Effective 4-fermi scalar and tensor couplings are generated that contribute to b_{Fierz} and spin correlation observables like B_ν as large as 0.001.
Weakly-coupled W' still has electric charge

Does $\sigma \ e^+ + e^- \rightarrow W^+ + W^-$ double for W'?

Depends on the cut for W: typically this cut (explicitly listed in PDG) excludes low-mass W because of serious background
nucleon form factors

Herczeg Prog Part Nucl Phys 46 (2001) 413 pointed out need for form factors

\[\langle p|\bar{u}d|n\rangle = g_s(q^2)\bar{u}_p u_n \]

\[\langle p|\bar{u}\sigma_{\lambda\mu}d|n\rangle = g_T(q^2)\bar{u}_p \sigma_{\lambda\mu} u_n \]

2001: “0.25 < g_s < 1” depressing to the experimentalist

\(g_T \) related to transverse spin structure function

Bhattacharya, Cirigliano, et al. PRD 85 05412 (2012) first lattice gauge calculations,

\(g_s = 0.8 \pm 0.4, \quad g_T = 1.05 \pm 0.35 \)

\(\rightarrow \) (2016) PRD 94 054508

\(g_s = 0.97 \pm 0.12 \pm 0.06, \quad g_T = 0.987 \pm 0.051 \pm 0.020 \)

\(g_s = 1.02 \pm 0.10 \) Gonzalez-Alonso, Camalich PRL 112 042501 (2014) isospin symmetry
“2nd-class” weak interactions would violate isospin symmetry when quarks are combined by QCD into nucleons. “Induced tensor” d is near zero in isobaric mirror decay.

This result is complementary to other nuclear β decay (Sumikama PRC 2011) in models where 2nd-class currents change with system (Wilkinson EPJA 2000)

Babar set best 3-generation constraints PRL 2009

$\tau^- \rightarrow \omega \pi^- \nu_\tau$
What elements can be laser cooled?

- H
- Li
- Na
- K
- Ca
- Rb
- Cs
- Fr
- Mg
- Al
- Cr
- Ag
- Ba
- Dy
- Er
- Yb
- He
- Ne
- Ar
- Kr
- Xe
- ANL
- LANL, TRIUMF
- LANL
- Stony Brook, JILA, Legnaro

Trapped in MOT
Radioactives trapped
Long-lived Rad.
Plans
Super-ratio

\[
A_{\text{obs}}^{\text{SR}}(E_e) = \frac{1 - s(E_e)}{1 + s(E_e)} = A_{\text{obs}}
\]

\[
s(E_e) = \sqrt{\frac{r_1^{-}(E_e)r_2^{+}(E_e)}{r_1^{+}(E_e)r_2^{-}(E_e)}}
\]

B. Plaster et al. PRC 86 (2012) 055501