

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Initial Tests of the Recoil Mass Spectrometer EMMA

May 30th, 2017 Barry Davids

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

EMMA in ISAC-II

EMMA: The ISAC-II Recoil Spectrometer

- EMMA: recoil mass spectrometer spatially separates heavy products of nuclear reactions from beam & disperses according to mass/charge ratios
- 4 magnetic quadrupole lenses, 1 dipole magnet, 2 electrostatic deflectors, 3 slit systems, target chamber with integral Faraday cup, and modular focal plane detection system w/ PGAC, ionization chamber, and Si detectors
- Magnets and deflectors from contractor, other components TRIUMF-built

Quadrupole Tests at Manufacturer

- Various properties of 4 quadrupole magnets measured by manufacturer:
- Field Gradient
- Effective Length
- Effective Field
 Boundary Locations
- Higher Harmonic
 Content
- Deviation of Mechanical and Magnetic Axes

Quadrupole Tests at TRIUMF

- Field gradients of all 4 quadrupoles measured as a function of current using Hall effect magnetometer, which was calibrated using an NMR system and the uniform field of our dipole magnet
- Field is measured at all times using a reference probe, which was calibrated simultaneously

EMMA Quadrupole Lenses

Magnetic Lenses	Quadrupole 1	Quadrupoles 2 & 3	Quadrupole 4
Bore Diameter	7 cm	15 cm	20 cm
Specified Effective Length	14 cm	30 cm	40 cm
Achieved Effective Length	13.98 cm	29.98 cm/29.88 cm	40.18 cm
Specified Maximum Pole Tip Field	1.21 T	0.87 T	0.81 T
Achieved Maximum Pole Tip Field	1.21 T	0.84 T	0.80 T
Achieved Field Gradient	34.6 T m⁻¹	11.3 T m ⁻¹	8.4 T m ⁻¹

Dipole Tests at Manufacturer

- 40 degree dipole magnet's field mapped at manufacturer
- Removable
 pole shims had
 to be machined
 three times
 before
 acceptance

Dipole Field Map Analysis

- Homogeneity and field boundary shape at 4 different currents analyzed at TRIUMF; magnet remapped at TRIUMF
- Maximum deviation from required effective length found at bending radius of 800 mm to be just under 0.3%; on average better than 0.1%

TRIUMF-Built HV Supplies

- Built 3 positive and 3 negative
- All have been tested to $|V| \ge 325 \text{ kV}$
 - Housed in re-entrant ceramic vessel
- Pressurized with 3 bar SF₆

Complete ED2 Electrode Assembly

EMMA Dipoles

Dipoles	Magnetic	Electric
Radius of Curvature	1 m	5 m
Specified Deflection Angle	40.00°	20°
Achieved Deflection Angle	40.11°	20.05°
Specified Effective Field Boundary Inclination Angle	8.3°	0
Achieved Effective Field Boundary Inclination Angle	7.93° and 8.67°	
Effective Field Boundary Radii	3.472 m	_
Maximum Field	1 T	40 kV cm ⁻¹

Vacuum Systems

RIUMF

- Typical pressures in 3/4 vacuum sections of 4×10⁻⁹ Torr; 1000 I/s turbos and 1500 I/s cryos
- Focal plane box has a single 1000 l/s turbo; pressure in low 10⁻⁶ Torr range

Target Chamber

- Integral Faraday cup with 1 mm entrance aperture coincides spatially with target position
- Target wheel with 3 positions

• Pumped by beam line 500 l/s turbo; pressure in low 10⁻⁷ Torr range

Slit Systems

- Plate slit systems upstream and downstream of dipole magnet
- More complex focal plane slit system has 2 plates and 2 rotatable fingers, allowing for 3 openings of variable width and position

Focal Plane Detectors

Position resolution 1 mm Timing resolution 660 ps **Ionisation Chamber**

Ionisation chamber tested with alpha and fission sources on bench

- There was no time to commission with an alpha source prior to December 16th beam time
- Bombarded thick [#]/_g
 Au foil with 80
 MeV ³⁶Ar beam
- Tuned for multiply scattered beam with very large angular spread

 Si-detector measured residual energy spread of 40% FWHM

Counts

 Consistent with filling nominal energy acceptance of +25%, -17%

Residual Energy (arbitrary units)

Measured Focal Plane Position Spectrum of Scattered ³⁶Ar

EMMA's First M/Q Spectrum

Measured Focal Plane Position Spectrum of Scattered ³⁶Ar

Measured mass/charge dispersion & resolving power consistent with ion optical calculations

- Si-detector measured residual energy spread of 111% FWHM
- Consistent with filling energy acceptance + energy loss straggling in PGAC windows

Residual Energy (arbitrary units)

Measured Focal Plane Position Spectrum of Scattered ¹⁹⁷Au

Set for ¹⁹⁷Au⁹⁺, observed single mass peak, no background in hour-long run with 10⁹ ions/s on target implying hardware beam suppression > 10¹²

Approved Experiments

- Typically EMMA will be required to detect heavy products of fusion and transfer reactions
- Two approved experiments, both of which require TIGRESS to be installed around EMMA target position
- Stable beam experiment: ⁶Li(¹⁷O,d)²¹Ne to infer ¹⁷O(α,γ)²¹Ne reaction cross section for the s process; also requires SHARC
- RIB experiment: direct measurement of $p(^{83}Rb,\gamma)^{84}Sr$ reaction cross section at *p* process energies

Experiments to be Proposed

- With SHARC: p(²¹Na,α)¹⁸Ne to infer ¹⁸Ne(α,p)²¹Na reaction cross section for Type I X-ray bursts
- With TIGRESS: direct measurement of p(⁷⁹Br,γ)⁸⁰Kr reaction cross section at *p* process energies

Future Plans

- Continue HV conditioning
 - Both anodes conditioned to 250 kV with <100 nA leakage current
 - ED2 cathode conditioned to -250 kV with <200 nA leakage current
 - ED1 cathode drew excessive current at low voltages, likely due to field emission from dust on cathode and/or field clamp; cleaning underway
 - ED2 reached $\Delta V = 415$ kV on Sunday stably with I_{load} <130 nA
- Alpha source tests this summer
- Elastic scattering and fusion evaporation reaction with stable beam starting Sep. 23, to complete commissioning
- Standalone experiments possible in fall schedule
- TIGRESS move to EMMA target position during shutdown 2017-2018

Core Personnel

- Martin Alcorta, ISAC Target & Detector Physicist
- Nicholas Esker, Postdoctoral Researcher
- Kevan Hudson, MSc Student
- Naimat Khan, Project Engineer
- Peter Machule, Expert Technician
- Matt Williams, PhD Student