Water Phase Energy Calibration in SNO+

Zachariah Barnard

Laurentian University

May 30, 2017
Outline

SNO+ Goals & Detector

Expected Signal

^{16}N Source

Monte Carlo Simulations

Updating the Source Geometry

Conclusion
Physics Goals

Water Phase
 • Invisible Nucleon Decay
Pure Scintillator Phase
 • Solar Neutrinos
Tellurium Loaded Scintillator
 • Neutrinoless Double Beta Decay
All Phases
 • Supernova Neutrinos
 • Geo/Reactor Antineutrinos
SNO+ Detector

Acrylic Vessel
- 12m diameter

Phototube Support
- 9500 PMTs
- 54% coverage

Water Shielding
- 1700 tonnes inner
- 5300 tonnes outer

Phase I - Light Water
- 900 tonnes

Phase II - Scintillator
- 780 tonnes

Phase III - Te Loaded
- 3900 kilograms
Current Status

Rope net holds detector down in scintillator phase

Z. Barnard, Laurentian University
Invisible Nucleon Decay

Oxygen-16

\[n \rightarrow \nu \nu \nu \nu \]

Oxygen-15

\[\gamma = 6.18 \text{ MeV} \]

Nitrogen-15

\[\gamma = 6.32 \text{ MeV} \]
Expected Signal - Monte Carlo Study

Understand Energy Scale with 16N Calibration Source

$^{[1]}$I. Coulter, SNO+ Collaboration
$^{16}\text{N} \text{ Source}$

Cleaned, measured and reassembled

Z. Barnard, Laurentian University
Run Plan

- Starting 25 May 2015 for Water Phase
- 104 unique positions
- Initially only scan in Z
- High stats central run
- Scans change in steps of 50cm
- 30 minute runs @500Hz
- External runs can be done for Scintillator Phase

Z Scan
- Z: -550.0cm ↔ 550.0cm

X scan
- X: -550.0cm ↔ 550.0cm

Y Scan
- Y: -550.0cm ↔ 550.0cm

3.0m ‘Corners’
2.3m ’Corners’
External Scan
- X: -586.11cm
- Y: -252.41cm
- Z: -500.0cm ↔ 500cm
First Look at 16N Data

Single Event from a Central Run from 16N Source

Z. Barnard, Laurentian University
Central 16N Monte Carlo

Energy from RSP fitter

<table>
<thead>
<tr>
<th>energyRSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>RMS</td>
</tr>
</tbody>
</table>

Measured Cerenkov photons from Gamma produced electrons

Z. Barnard, Laurentian University
Central 16N Monte Carlo

Nhits versus RSP fitter

Correlation between number of PMTs hit versus Energy

Z. Barnard, Laurentian University
Monte Carlo - Full Z Scan

Change in Reconstructed Energy over Z-axis Scan

Need input from Calibration constants to improve fit
Updating the Source Geometry

SNO Updated SNO SNO+
Updating Source Geometry - Continued

Not a significant change and makes code run \approx 1.8\% quicker
Conclusion

16N calibrations runs started 25 May 2017!!!

Energy Fitter needs 16N for efficiency model

Energy bias will improve with new timing calibrating runs

Correct geometry updated for Monte Carlo
Questions?
Backup Slides
16N Decay Scheme

16N \(\rightarrow \) 16O* 7.13 s

\[Q^+ \quad 10419.1 \text{ keV} \]

B$^-$: 100% \rightarrow 16O*

<table>
<thead>
<tr>
<th>J$^\pi$</th>
<th>En [keV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+</td>
<td>9844.5</td>
</tr>
<tr>
<td>1−</td>
<td>9585</td>
</tr>
<tr>
<td>2−</td>
<td>8871.9</td>
</tr>
<tr>
<td>1−</td>
<td>7116.85</td>
</tr>
<tr>
<td>2+</td>
<td>6917.1</td>
</tr>
<tr>
<td>3−</td>
<td>6129.89</td>
</tr>
<tr>
<td>0+</td>
<td>6049.4</td>
</tr>
<tr>
<td>0+</td>
<td>0</td>
</tr>
</tbody>
</table>

16O* STABLE
