Background Strategy in SuperCDMS SNOLAB

Silvia Scorza

2017 CAP Congress Congrès de l'ACP 2017 01 June 2017

Signal vs Backgrounds

Elastic Scattering of WIMPs off target nuclei → Nuclear Recoil (signal)

Gamma- and beta- particles interacting with the atomic electron → Electronic Recoil (background)

What Background?

Cosmic rays & cosmogenic activation of detector and materials

Natural radioactivity (²³⁸U, ²³²Th, ⁴⁰K): **γ**, e⁻, n, β, α

Ultimately: neutrino-nucleus scattering (solar, atmospheric and supernovae neutrinos)

How to Minimize Backgrounds?

Minimize time at surface + go deep underground Limit cosmogenic activation, and fewer cosmic rays to produce neutrons (neutrons produce nuclear recoils as WIMPs)

Passive/Active shielding

Reduce backgrounds from environmental radioactivity (²³⁸U, ²³²Th, ⁴⁰K)

Surface cleaning and radon-reduced cleanroom to minimize surface backgrounds

Material screening (alpha / beta / gamma spectroscopy, chemical trace analysis)

Select LowRad materials Silvia Scorza

PE to moderate neutrons Cu, Pb for betas and gammas

How to Minimize Backgrounds?

Minimize time at surface

+ go deep underground

Limit cosmogenic activation, and fewer cosmic rays to produce neutrons (neutrons produce nuclear recoils as WIMPs)

Passive/Active shielding

Reduce backgrounds from environmental radioactivity (238U, 232Th, 40K)

Surface cleaning and radon-reduced cleanroom to minimize surface backgrounds

Material screening (alpha / beta / gamma spectroscopy, chemical trace analysis)

Select LowRad materials

Silvia Scorza

Gopher HPGe detector @SNOLAB

				Se	arch	Su	bmit	Settings	About					
			copper								P			
XO (2008)	Сорре	r, OFRI	P, Nordd	leutsche	Affin	erie		Th	< 2	.4 ppt	U	< 2.9 ppt		
	Sample	Descr	ption Norddeutsche Affinerie OFRP copper made May 2006, batch E263/2E1. Table 3. #3											
		ID		Table 3.	#3									
	Measurement	ID Result	ts	Table 3. K Th U	#3 < < <	55 2.4 2.9	(95%) (95%) (95%)	ppb ppt ppt						
	Measurement	ID Result Techn Descri	ts Nque iption	Table 3. K Th U ICP-MS For each from iso	#3 < < < of K, topic t	55 2.4 2.9 Th, an o total	(95%) (95%) (95%) d U, nat	ppb ppt ppt ural terrest cal abundar	rial abunda ces.	nce ratios	were us	ed to covert		

How to Identify Backgrounds?

Ge/Si crystal: event ID from measurements of charge and phonon signals

Rejection of bulk electron recoils better than 4.7 x 10⁻⁶ (90%C.L.)

Silvia Scorza

CAP Congress 2017

How to Identify Backgrounds?

Ge/Si crystal: event ID from measurements of charge and phonon signals

Bulk Events:

Equal but opposite ionization signal appears on both sides of each detector (symmetric)

Surface Events:

Ionization signal appears on one detector side (asymmetric)

Discrimination

Fiducialization

CAP Congress 2017

Surface Events

Surface Events

Incomplete charge collection → low yield Surface Contamination

50 nm 350 nm 20 μm

700 µm

²¹⁰Pb from Rn exposure and U, Th, K in dust
Detectors, housing interiors, clamps, DIBs, ...
High rate from low-penetration emissions (alphas, betas, x-rays)

Average radon activity @SNOLAB \approx 135 Bq/m³ 210Pb plate-out is a concern during installation

2 mm

Plate-out

Plate-out

Implantation

Radon Plate-out

XIA LLC alpha counter measurement of ²¹⁰Po alphas (5.3 MeV)

Pre-exposure assays performed 96 \pm 18 nBq/cm² for HDPE 394 \pm 62 nBq/cm² for Cu

SuperCDMS group at SMU (Dallas, TX)

Two post-exposure measurements per sample

- Cu and HDPE samples exposed in SNOLAB
- Predict alpha activity over time
- Inform exposure limits for installation of SuperCDMS SNOLAB
- Inform future background estimates
- Be useful for other projects/experiments

Analytical Model ²¹⁰Po Activity

Total $Activity = {}^{210} Pb Activity + (Dust Activity)$ $^{210}Pb \rightarrow ^{210}Po(t_{1/2}138d)$ ²¹⁰Po activity increases with time, after exposure U and Th chains activity, constant in time

Analytical Model ²¹⁰Po Activity

Two measurements of activity:

 $Total \ Activity = R_{Pb}K_{Pb} + S_{dust}K_{dust} \ \text{- two unknown variables} \\ \text{- ingrowth of 210Po}$

Cross Measurements

16

CAP Congres

Silvia Scorza

