LHC phenomenology of supersymmetric models with a $U(1)_R$ baryon number

Kevin Earl

arXiv: 1703.03866

Carleton University

May 31, 2017

CAP 2017
1. Motivation

2. $U(1)_R$ baryon number

3. Phenomenology

4. Conclusion
The Minimal Supersymmetric Standard Model (MSSM)

Quarks:
- u
- c
- t
- d
- s
- b

Squarks:
- \(\tilde{u}\)
- \(\tilde{c}\)
- \(\tilde{t}\)
- \(\tilde{d}\)
- \(\tilde{s}\)
- \(\tilde{b}\)

Leptons:
- \(\nu_e\)
- \(\nu_\mu\)
- \(\nu_\tau\)
- \(\tilde{\nu}_e\)
- \(\tilde{\nu}_\mu\)
- \(\tilde{\nu}_\tau\)

Sleptons:
- \(\tilde{e}\)
- \(\tilde{\mu}\)
- \(\tilde{\tau}\)

Gauge bosons:
- \(Y\)
- \(Z\)
- \(\tilde{B}\)
- \(W^\pm\)
- \(\tilde{W}\)
- \(g\)
- \(\tilde{g}\)

Higgs bosons:
- \(A\)
- \(\tilde{H}^0_d\)
- \(H^\pm\)
- \(\tilde{H}^-_d\)
- \(H\)
- \(\tilde{H}^+_u\)
- \(h\)
- \(\tilde{H}^0_u\)
The Minimal Supersymmetric Standard Model (MSSM)
MSSM: field content

<table>
<thead>
<tr>
<th>Superfield</th>
<th>$SU(3)_c$</th>
<th>$SU(2)_L$</th>
<th>$U(1)_Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>3</td>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>U^c</td>
<td>3</td>
<td>1</td>
<td>$-2/3$</td>
</tr>
<tr>
<td>D^c</td>
<td>3</td>
<td>1</td>
<td>1/3</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>2</td>
<td>$-1/2$</td>
</tr>
<tr>
<td>E^c</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>H_u</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td>H_d</td>
<td>1</td>
<td>2</td>
<td>$-1/2$</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>W^i</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>G^a</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
MSSM: superpotential

The most general superpotential:

\[W = y_u Q H_u U^c - y_d Q H_d D^c - y_e L H_d E^c + \mu H_u H_d \leftarrow \text{good} \]
\[+ \frac{1}{2} \lambda L L E^c + \lambda' L Q D^c + \frac{1}{2} \lambda'' U^c D^c D^c + \epsilon H_u L \leftarrow \text{bad} \]

lepton number violating baryon number violating

Can we forbid the undesirable terms?
Discrete Z_2 symmetry forbids undesirable terms. Consequences:

- supersymmetric particles are produced in pairs
- decaying supersymmetric particles must produce at least one supersymmetric particle
- the lightest supersymmetric particle (LSP) is stable
ATLAS susy searches

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: March 2017

<table>
<thead>
<tr>
<th>Model</th>
<th>c_t, μ, T, Y</th>
<th>Jets</th>
<th>E_{T}^{min}</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSUGRA/CMSSM</td>
<td>0.3, μ, 1.2</td>
<td>2-10 jets</td>
<td>36.1</td>
<td>1507.0520</td>
</tr>
<tr>
<td>GGM (compressed)</td>
<td>0</td>
<td>2-6 jets</td>
<td>36.1</td>
<td>1604.0077</td>
</tr>
<tr>
<td>GGM (wino NLSP)</td>
<td>0</td>
<td>2-6 jets</td>
<td>36.1</td>
<td>1507.0520</td>
</tr>
<tr>
<td>GGM (higgsino-bino NLSP)</td>
<td>0</td>
<td>2-6 jets</td>
<td>36.1</td>
<td>1507.0520</td>
</tr>
<tr>
<td>GGM (higgsino-bino NLSP)</td>
<td>0</td>
<td>2-6 jets</td>
<td>36.1</td>
<td>1507.0520</td>
</tr>
<tr>
<td>GGM (higgsino-bino NLSP)</td>
<td>0</td>
<td>2-6 jets</td>
<td>36.1</td>
<td>1507.0520</td>
</tr>
<tr>
<td>GGM (higgsino-bino NLSP)</td>
<td>0</td>
<td>2-6 jets</td>
<td>36.1</td>
<td>1507.0520</td>
</tr>
<tr>
<td>GGM (higgsino-bino NLSP)</td>
<td>0</td>
<td>2-6 jets</td>
<td>36.1</td>
<td>1507.0520</td>
</tr>
<tr>
<td>GGM (higgsino-bino NLSP)</td>
<td>0</td>
<td>2-6 jets</td>
<td>36.1</td>
<td>1507.0520</td>
</tr>
</tbody>
</table>

Other

- | Scalar charm, c_t → c

Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.
ATLAS susy searches involving MET
Thinking beyond the MSSM: R-symmetries

Instead of a discrete Z_2 symmetry, consider a global $U(1)_R$ symmetry.

$$\theta \rightarrow e^{i\alpha} \theta, \quad \theta^\dagger \rightarrow e^{-i\alpha} \theta^\dagger$$

Chiral superfield Φ with R-charge r_Φ transforms as $\Phi \rightarrow e^{ir_\Phi \alpha} \Phi$. Then

$$\phi \rightarrow e^{ir_\Phi \alpha} \phi, \quad \chi \rightarrow e^{i(r_\Phi - 1)\alpha} \chi, \quad F \rightarrow e^{i(r_\Phi - 2)\alpha} F$$

Vector superfields are real $V^\dagger = V$ and so have zero R-charge, $V \rightarrow V$.

gauginos have R-charge 1, $\lambda \rightarrow e^{i\alpha} \lambda$

Minimal R-symmetric Supersymmetric Standard Model (MRSSM)
Kribs, Poppitz, Weiner ‘07

Different R-charge assignments are possible.
Frugiuele, Grégoire, Kumar, Pontón ‘12
Consequences of R-symmetries

Two consequences of R-symmetries:

- gauginos are now required to be Dirac fermions
- in the MSSM gauginos are Majorana fermions
- however, Majorana mass terms are forbidden
- μ-term in the superpotential is forbidden by the R-symmetry

We must introduce additional fields.
$U(1)_R$ baryon number 1

<table>
<thead>
<tr>
<th>Superfield</th>
<th>R-charge</th>
<th>Superfield</th>
<th>R-charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>4/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U^c</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D^c</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E^c</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_u</td>
<td>0</td>
<td>R_d</td>
<td>2</td>
</tr>
<tr>
<td>H_d</td>
<td>0</td>
<td>R_u</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td>W^i</td>
<td>0</td>
<td>T^i</td>
<td>0</td>
</tr>
<tr>
<td>G^a</td>
<td>0</td>
<td>O^a</td>
<td>0</td>
</tr>
</tbody>
</table>
This R-charge assignment is referred to as $U(1)_R$ baryon number because R-charges of SM particles corresponds to their baryon number.

New superpotential:

$$W = y_u Q H_u U^c - y_d Q H_d D^c - y_e L H_d E^c + \mu_u H_u R_d + \mu_d R_u H_d$$

$$+ \lambda_u^t H_u T R_d + \lambda_d^t R_u T H_d + \lambda_u^s S H_u R_d + \lambda_d^s S R_u H_d + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c$$

 phenomenologically interesting, but take only $\lambda''_{312}, \lambda''_{313}, \lambda''_{323}$ non-zero to avoid flavour issues
Stop phenomenology: stop LSP 1

Stops both resonantly produced, $pp \to \tilde{t}^*$, and pair produced $pp \to \tilde{t}\tilde{t}^*$.

13 TeV →

Stops can decay back to quarks, $\tilde{t}^* \to d_i d_j$.

![Graph showing the cross section for different scenarios](image URL)
Signals:

- dijets: \(pp \rightarrow \tilde{t}^* \rightarrow d_i d_j \)
- paired dijets: \(pp \rightarrow \tilde{t}^* \tilde{t} \rightarrow d_i d_j \bar{d}_i \bar{d}_j \)

similar to Monteux ‘16
Consider a Higgsino-up LSP. The stop can now decay three different ways:

\[\tilde{t}^* \rightarrow d_i d_j, \quad \tilde{t}^* \rightarrow \bar{t} \chi^0, \quad \tilde{t}^* \rightarrow \bar{b} \chi^- .\]

600 GeV stop and 200 GeV neutralino
Stop phenomenology: neutralino LSP 2

Stops decaying through charginos:

\[
\tilde{t}^* \rightarrow \bar{b} \chi^- b \tilde{t}^*
\]

Stops decaying through Dirac neutralinos:

\[
\tilde{t}^* \rightarrow \bar{t} \chi^{0,D} t \tilde{t}^*
\]

Stops decaying through Majorana neutralinos:

\[
\tilde{t}^* \rightarrow \bar{t} \chi^{0,M}_{1,2} t \tilde{t}^* \quad \text{and} \quad \bar{t} \chi^{0,M}_{1,2} \tilde{t}
\]
Stop phenomenology: neutralino LSP 3

Unavoidable $U(1)_R$ breaking generates Majorana gauginos masses.

How large does the breaking need to be so that same sign and opposite sign tops are produced equally from stop decays?
Stop phenomenology: neutralino LSP 4

Two production mechanisms:
- $pp \rightarrow \tilde{t}^*$
- $pp \rightarrow \tilde{t}^*\tilde{t}$

Three decay possibilities:
- $\tilde{t}^* \rightarrow d_i d_j$
- $\tilde{t}^* \rightarrow \bar{t}\chi^0$
- $\tilde{t}^* \rightarrow \bar{b}\chi^-$

Nine possible decay topologies. Can use LHC searches to constrain the parameter space.

Also possible to use displaced vertices from neutralino decays to constrain the parameter space.
Stop phenomenology: neutralino LSP 5

200 GeV Dirac neutralinos:
Stop phenomenology: neutralino LSP 6

200 GeV Majorana neutralinos:

similar to Monteux ‘16
To summarize:

- lack of signals continues to push MSSM superpartner masses upwards
- this suggests thinking beyond the MSSM
- $U(1)_R$ baryon number is an example of an extended supersymmetry model
- the parameter space of this model is also constrained by recent LHC SUSY searches