Inferring sizes of compartments using oscillating gradient spin echo magnetic resonance imaging

Melanie Martin
University of Winnipeg
Sheryl Herrera and Morgan Mercredi
University of Manitoba

Outline

- MRI
- Diffusion
- Restricted diffusion
- A model of diffusion to infer cell sizes
- Phantom data
- Simulation data to reduce imaging time

NMR

$$\omega_0 = -\gamma \mathbf{B}_0$$

- Nuclear magnetization, M, is an ensemble effect
- Angular momentum (spin) means they precess in B_0 field

Gradients for Measurement of Diffusion

- If the field B is uniform then all spins have the same frequency
- If $B = B_0 + g \cdot x [g = linear gradient]$ then spins at different positions x have different frequencies ($\Delta \omega = \gamma g x$)
- If spins move along x their NMR frequencies change with time

Measuring Diffusion Using NMR

Diffusion Coefficient

Einstein relation

1D
$$\langle (x_1-x_2)^2 \rangle = 2Dt$$

- · D is characteristic of medium
- Magnitude of D depends on ease of movement
- $D_{H2O} = 2 \mu m^2/ms$ at room temperature

Restricted Diffusion

Diffusion time is $\Delta_{\rm eff}$

• Unrestricted diffusion if $\langle r^2 \rangle \gg 2D_{free}\Delta_{eff}$

• Hindered diffusion if barriers partially permeable and/or $\langle r^2 \rangle \approx 2D_{free}\Delta_{eff}$

• Restricted diffusion if $\langle r^2 \rangle \ll 2D_{free}\Delta_{eff}$

Axons

- Part of neurons, or nerve cells in the brain.
- Long, threadlike projections that conduct electrical impulses in nerve cells.
- Transmits information to nerve cells throughout the body.

Biological Tissues

- Free water diffuses $\approx 5 \mu m$ in 5 ms
- Cells are ≈ 0.1 50 μ m in size
- Axons in mice are < 1 μ m in diameter
- Standard MRI requires ≈ 10 100 ms
- Standard MRI cannot measure the transition from restricted to free diffusion
- Standard MRI cannot infer cell sizes

Measurements at Short Δ_{eff}

- Small displacements → small effects
- Increase sensitivity/accuracy by averaging or...
- Increase effect size by using very big g or...
- Use another method

Oscillating Gradient Spin Echo Sequence

OGSE Pulse Sequence

Axon diameter distributions (AxCaliber)

- AxCaliber is a model for estimating axon distributions using diffusion MRI
- Model the signal as coming from two compartments:

- f: volume fraction of intracellular space
- D_h: hindered diffusion coefficient (apparent extracellular diffusion coefficient)
- D_i: intracellular diffusion coefficient
- $w(r_i, \theta)$: axon radius distribution (parameterized by θ)
- $\exp(-\beta(r_i, D_i))$: analytical signal from single cylinder

Phantom (capillary tubes)

Capillary tubing (OD \sim 150 μ m , ID \sim 2 μ m)

- Soaked in filtered water, packed into centrifuge tubing, ~500 pcs(~2cm)
- Tubing were also filled with water but the volume was not large enough to produce a measurable signal.
- ROIs were created for the noise, within the centrifuge tubing, and a larger capillary tube (ID \sim 750 μ m) for comparison.

Phantom (capillary tubes)

- Surface to volume ratio was found to be $0.09 \pm 0.01 \, \mu m^{-1}$, containing water diffusing at $2.01 \pm 0.01 \, \mu m^2/ms$.
- Corresponds to tube diameters of 180 \pm 30 μm (Assuming 80% hexagonal packing)

Plot for ROI # 4

Actual average outer diameter ~151 μm

Effects of noise

- To see the effects of noise on the parameter estimates, add Gaussian noise to the $M_{\rm x}$ and $M_{\rm y}$ components of the simulation results
- For each realization of noise, do the fitting procedure and store the parameter estimates (repeat 1000 times)

Mercredi et al MAGMA 2017

OGSE frequencies

- Want to see how the fitted parameter distributions change when using smaller (or fewer) OGSE frequencies
- Use $n_f = \{5, 10, 15, 20\}$ frequencies (50 250, 500, 750, 1000 Hz)
- For some diameters, σ_d change very little

OGSE gradients

- See how fitted parameter distributions change when using smaller (and fewer) gradients
- $G = \{G_0 = 0, G_1, ..., G_{max} = 900 \text{ mT/m}\}$
- Multiple gradients are slightly better than just two
- Two gradients can be better, if the nonzero gradient is big enough

#1	G ₀ , G ₁ , G ₂ , G ₃ , G ₄
#2	G ₀ , G ₄
#3	G ₀ , G ₁ , G ₂ , G ₃
#4	G ₀ , G ₃
#5	G ₀ , G ₁ , G ₂
#6	G ₀ , G ₂
#7	G ₀ , G ₁

Intra-axonal simulations

Future studies

- Finding the optimal limited range of frequencies and gradient strengths for expected diameter sizes
- Finding the optimal signal-to-noise ratio for the experiments
- Finding the optimal resolution for the images
- Measurements on brains

Conclusions

- MRI can infer sizes of structures by measuring water diffusion within the structures
- OGSE sequences can make measurements of micron diameters in biological samples

Acknowledgements

<u>Martin Lab</u>

- Richard Buist
- Sheryl Herrera
- Morgan Mercredi
- Trevor Vincent

Collaborator

- · Chris Bidinosti
- Kant Matsuda

Acknowledgments

UNIVERSITY

OF MANITOBA

NSERC CRSNG

Canada Foundation for Innovation Fondation canadienne pour l'innovation

Manitoba Health Research Council

Energy, Science and Technology