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In two-dimensional (2D) crystals with broken inversion symmetry, the spin degeneracy of the
electronic band structure may be lifted by Rashba spin-orbit coupling. The resulting spin-split
dispersion is responsible for the spin Hall effect and can also be observed in ultra-cold atoms. This
spin-split dispersion is described in terms of two distinct helicity bands, but below a threshold
energy, electrons are confined to one of these. At the bottom of this lower band, the density of
states is enhanced to form a van Hove singularity. This is the relevant regime for a dilute spin-orbit
coupled 2D electron gas, which has been shown to host a variety of exotic phases in the presence of
electron-electron interactions. In this limit, electron scattering from a hard disk potential has been
shown to exhibit an unusual one-dimensional characteristic in its S matrix and scattering cross-
section. We show that this behaviour is universal for Rashba scattering off of any circular, finite
range potential. This is relevant both for impurity scattering in the noninteracting limit as well
as for short-range two-particle scattering in the interacting problem. A generic solution of the T
matrix is computed, which produces the one-dimensional character of the scattering physics. Other
scattering quantities including the cross section are derived, and an optical theorem is proven.

PACS numbers:

I. INTRODUCTION

Bladiblah.

II. RASHBA SPIN-ORBIT COUPLING

We begin with the unperturbed Rashba Hamiltonian
in two dimensions [1]

H(k) =

k

2

2m
+ �ˆz · (� ⇥ k), (1)

where k is the electron wave vector confined to the x-y
plane (we work in units of ~ = 1), and � is the vector
of Pauli matrices, and � is the Rashba coupling. This
Hamiltonian is readily diagonalized to give the spin-split
spectrum

E±(k) =
k2

2m
± �k, (2)

and eigenspinors

⌘±(✓
k

) =

1p
2

✓
1

⌥iei✓k

◆
. (3)

There is a degenerate ring of states for each wave vector
of magnitude k. Since the spin expectation value in the
corresponding eigenstates is locked orthogonally to the
wave vector, this spectrum consists of two bands of op-
posite helicity, designated by the ± subscripts. We are

⇤
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exclusively interested in the lower of these two bands,
and so it is useful to write all quantities in terms of the
ground state energy �E

0

⌘ �m�2/2, and the ground
state wave vector magnitude k

0

⌘ m�. These are the
only quantities that are controlled by the Rashba cou-
pling in our problem. Along this vein, we parameterize
the electron scattering energy by the dimensionless quan-
tity � ⌘

p
1� |E|/E

0

.
For any given energy �E

0

< E < 0 and wave vec-
tor angle ✓, there exist two degenerate negative-helicity
states of different wave vector magnitude. One has a
wave vector whose magnitude is greater than k

0

, while
the other is less than k

0

. We denote these magnitudes by

k? = k
0

(1± �). (4)

III. SCATTERING QUANTITIES

Roughly speaking, the T -matrix is the portion of the
S-matrix in which some scattering occurs. Since Rashba
scattering involves some subtleties, it is worth deriving
the exact relation between these objects in the nega-
tive energy regime, elucidating various scattering quan-
tities along the way. The natural starting point is the
Lippmann-Schwinger equation.
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0
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0
(r

0
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(5)

where G+

(r, r0;E) is the retarded position-space Green’s
function of the unperturbed Hamiltonian, V (r) is the
scattering potential, and � is a spin index. The incident
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Example: Hard Disk

❖ Cross-sections and S-matrix extracted.
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where a
l

, b
l

, c
l

, and d
l

are arbitrary coefficients.

III. HARD-DISK SCATTERING

We now add to the free-particle Hamiltonian (1) a scat-
tering potential V . We first consider single-electron scat-
tering off an infinite circular barrier

V =

(
1, r  R,

0, r > R.
(9)

Because the potential vanishes identically for r > R,
eigenstates of the full Hamiltonian with energy E obey
the free-particle expansion (8) in that region. In that
region, the wave function consists of an incident plane
wave  in

? with definite wave vector k? ˆ

x, as well as out-
going scattered waves with each of the allowed wave vec-
tors. In a typical scattering problem, the outgoing states
consist of H+

(kr) radial functions, which combines with
the fact that the group velocity v

g

points in the same
direction as the wave vector k to ensure that the prob-
ability current carried by an outgoing state is directed
radially outwards. However, in the Rashba problem the
expectation value of the group velocity v

g

= rkH0(k)

in states of negative helicity is hv
g

i = (k � k0)ˆk/m. For
energies below the Dirac point, the k

<

states have group
velocity antiparallel to the wave vector, thus the outgo-
ing k

<

states should be accompanied by H�
(kr) radial

functions to carry a probability current directed radially
outwards. For an incident wave in the k

>

state, the wave
function for r > R can be written as
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while for an incident wave in the k
<

state, we have
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FIG. 2. Plane wave scattering off an infinite circular barrier.
There are two circular scattered states (blue and orange) of
different wavelengths corresponding to the k> and k< states,
respectively.

In these expressions b
l

, c
l

, ˜b
l

, and c̃
l

are coefficients to be
determined by a solution of the scattering problem.

The incident plane wave can itself be decomposed into
partial waves:
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The infinite potential barrier (9) forces the wave function
to vanish at r = R,
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✓
0
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◆
. (16)

Imposing this condition in Eq. (10) and (13) gives four
equations from which we obtain the unknown coefficients
b
l

, ˜b
l

, c
l

, c̃
l

:

b
l

=

1

�

l

✓
H+

l

(k
>

R)H�
l+1(k>

R) � H�
l

(k
>

R)H+
l+1(k>

R)

◆
,

c
l

=

1

�

l

✓
H�

l

(k
>

R)H�
l+1(k<

R) � H�
l

(k
<

R)H�
l+1(k>

R)

◆
,

˜b
l

=

1

�

l

✓
H+

l

(k
>

R)H+
l+1(k<

R) � H+
l

(k
<

R)H+
l+1(k>

R)

◆
,

c̃
l

=

1

�

l

✓
H+

l

(k
<

R)H�
l+1(k<

R) � H�
l

(k
<

R)H+
l+1(k<

R)

◆
,

❖ Wavefunction computed analytically from matching conditions.
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circularly symmetric potentials in the negative-energy
regime E < 0, with a focus on the approach to the
band bottom E ! �E0. We find several features in
this limit that appear to be insensitive to details of the
scattering potential: the S-matrix approaches a purely
off-diagonal form with both off-diagonal elements equal
to negative one, and all angular momentum channels
contribute equally at the band bottom; the differential
cross section is increasingly peaked at forward and back-
ward scattering angles; the total cross section increases
by quantized steps as the energy approaches the band
bottom. The quasi-1D character of these features sup-
ports and further expands Ref. [7]’s interpretation of re-
duction in effective dimensionality in the low-energy limit
of Rashba systems. In the presence of harmonic poten-
tials, the energy spectrum of Rashba systems is known to
exhibit Landau-level-like quantization [27], which can be
interpreted as yet another manifestation of dimensional
reduction induced by spin-orbit coupling.

We conjecture the features we have found are univer-
sal, at least for spin-independent, circularly symmetric,
finite-range potentials. It would be interesting to test
this conjecture with other potentials in this class, and
further see if it extends to spin-dependent but other-
wise time-reversal-symmetric potentials. We expect some
of the features we have discussed could be observed ex-
perimentally in low-density, strongly spin-orbit coupled
2D electron gases using scanning gate microscopy tech-
niques, which have been used to image coherent electron
flow [28, 29]: concrete predictions to be compared di-
rectly with experiment such as simulated current maps
could in principle be derived from the results presented
in this work, for example by the method discussed in
Ref. [19].
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Appendix A: Spin-degenerate hard-disk scattering

For comparison we present the results for electrons
scattering off the hard-disk potential (9) in 2D but with-
out spin-orbit coupling. In this case, the wave function
in the scattering region r > R is given by

 (r, ✓) =

✓
1p
2

eikx

+

1X

l=�1
a

l

eil✓H+
l

(kr)

◆
⌘, (A1)

where ⌘ is an arbitrary spinor, and there is only a single
wave vector k =

p
2mE for each incident energy E. The
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FIG. 6. Polar plot of differential cross section for the spin-
degenerate problem with various values of kR. The radius of
each curve is the magnitude of d�/d✓ in units of 1/k.

matching condition (16) gives two degenerate equations
that determine the only unknown coefficient
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J
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The incident and scattered current densities have mag-
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2m

and |jsc| = 2
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|
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l
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respectively. Equation (28) then gives the differential
cross section
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which is plotted in Fig. 6. The cross section is isotropic
in the long-wavelength limit, and forward scattering is
enhanced as the wavelength is decreased.

In the long-wavelength limit, one may use the small-
argument form of the Bessel functions,
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where � is Euler’s constant and

✏
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=

(
1, l > 0,
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In this limit, the coefficient (A2) is
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Example: Hard Disk
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FIG. 3. (a) Diagonal and (b) off-diagonal transition prob-
abilities from the S-matrix elements for partial waves l =
0, 1, 2, 3, 4, as a function of � =

p
1� |E|/E0. In both plots

k0R = 0.1.

Using the asymptotic form of the incident and scattered
wave functions, the fluxes are given by
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FIG. 4. Polar plots of differential cross section for scattering
between: (a) helicity bands at positive energies (E = 2E0,
E = 4E0, E = 6E0), (b) k? states at negative energies (E =
�0.01E0, E = �0.5E0, E = �0.99E0), and (c) k? states
near the band bottom (E = �0.999E0, E = �0.9999E0, E =
�0.99999E0). In each plot, k0R is set to 0.1. The radius of
each curve is the magnitude of k0|�ii|2. In the bottom figure,
there is no visible distinction between |�><|2 and |�<<|2, as
with |�>>|2 and |�<>|2, so only one of each is plotted.
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where s(k) ⌘ sgn(k � k
0

).
This conversion allows us to write the momentum-

space T -matrix starting with the S-matrix in the E, l, s
µ

basis. From (29),
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where we used the fact that angular momentum conser-

vation and elastic scattering guarantee the S-matrix as
diagonal in l and E. Thus we finally have
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Letting k = k
⌫
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, and noting that |k
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⌫
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circularly symmetric potentials in the negative-energy
regime E < 0, with a focus on the approach to the
band bottom E ! �E0. We find several features in
this limit that appear to be insensitive to details of the
scattering potential: the S-matrix approaches a purely
off-diagonal form with both off-diagonal elements equal
to negative one, and all angular momentum channels
contribute equally at the band bottom; the differential
cross section is increasingly peaked at forward and back-
ward scattering angles; the total cross section increases
by quantized steps as the energy approaches the band
bottom. The quasi-1D character of these features sup-
ports and further expands Ref. [7]’s interpretation of re-
duction in effective dimensionality in the low-energy limit
of Rashba systems. In the presence of harmonic poten-
tials, the energy spectrum of Rashba systems is known to
exhibit Landau-level-like quantization [27], which can be
interpreted as yet another manifestation of dimensional
reduction induced by spin-orbit coupling.

We conjecture the features we have found are univer-
sal, at least for spin-independent, circularly symmetric,
finite-range potentials. It would be interesting to test
this conjecture with other potentials in this class, and
further see if it extends to spin-dependent but other-
wise time-reversal-symmetric potentials. We expect some
of the features we have discussed could be observed ex-
perimentally in low-density, strongly spin-orbit coupled
2D electron gases using scanning gate microscopy tech-
niques, which have been used to image coherent electron
flow [28, 29]: concrete predictions to be compared di-
rectly with experiment such as simulated current maps
could in principle be derived from the results presented
in this work, for example by the method discussed in
Ref. [19].
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Appendix A: Spin-degenerate hard-disk scattering

For comparison we present the results for electrons
scattering off the hard-disk potential (9) in 2D but with-
out spin-orbit coupling. In this case, the wave function
in the scattering region r > R is given by
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matching condition (16) gives two degenerate equations
that determine the only unknown coefficient
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which is plotted in Fig. 6. The cross section is isotropic
in the long-wavelength limit, and forward scattering is
enhanced as the wavelength is decreased.

In the long-wavelength limit, one may use the small-
argument form of the Bessel functions,
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where � is Euler’s constant and

✏
l

=

(
1, l > 0,

(�1)

l, l < 0.
(A6)

In this limit, the coefficient (A2) is
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FIG. 3. (a) Diagonal and (b) off-diagonal transition prob-
abilities from the S-matrix elements for partial waves l =
0, 1, 2, 3, 4, as a function of � =

p
1� |E|/E0. In both plots

k0R = 0.1.

Using the asymptotic form of the incident and scattered
wave functions, the fluxes are given by
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FIG. 4. Polar plots of differential cross section for scattering
between: (a) helicity bands at positive energies (E = 2E0,
E = 4E0, E = 6E0), (b) k? states at negative energies (E =
�0.01E0, E = �0.5E0, E = �0.99E0), and (c) k? states
near the band bottom (E = �0.999E0, E = �0.9999E0, E =
�0.99999E0). In each plot, k0R is set to 0.1. The radius of
each curve is the magnitude of k0|�ii|2. In the bottom figure,
there is no visible distinction between |�><|2 and |�<<|2, as
with |�>>|2 and |�<>|2, so only one of each is plotted.

6

where sums over l range from �1 to 1.
We plot the differential cross section in units of k�1

0 in
Fig. 4. From panel (c), we see that the differential cross
section in the incoming k

>

channel (|�
>>

|2 + |�
><

|2)
becomes increasingly anisotropic with peaks at ✓ = 0

(forward scattering) and ✓ = ⇡ (backscattering) as E
tends to the band bottom �E0. Using the observation
that in this limit, c

l

=

˜b
l

= 0 and c̃
l

= b
l

= il/2
p
2,

the sums over l in Eq. (34) and (35) can be performed
analytically and we find that the differential cross section
at the band bottom formally becomes

✓
d�

d✓

◆

?

����
E=�E0

=

2⇡

k0

⇥
�2(✓) + �2(✓ � ⇡)

⇤
. (38)

At the band bottom, scattering becomes effectively one-
dimensional in that only forward and backward scatter-
ing are allowed. No such feature occurs in the E > 0

regime. The non-integrability of the differential cross
section at threshold is a common feature of scattering in
two dimensions (see Appendix A). Unlike conventional
scattering though, the divergence here arises from the
contribution of an infinite number of partial waves at the
threshold energy. Remarkably, Eq. (38) has no R de-
pendence, and is therefore insensitive to the range of the
scattering potential. As shown in Appendix A, this is
in contrast with scattering of an electron without spin-
orbit coupling where the differential cross section near
the band bottom depends explicitly on the radius R of
the scatterer. In Sec. IV we present further evidence that
the details of the impurity potential do not affect this re-
sult.

For reference we show in Fig. 4(a) the differential cross
section for the E > 0 regime, which was previously
worked out by Yeh et al. [18]. In this regime ± refers
to the helicity of the band. The anisotropies in the dif-
ferential cross section can be understood from the fact
that the scattering potential is spin-independent. For
example, when starting from an incident positive-helicity
state, the electron can only forward scatter into a state of
the same helicity, since scattering to the negative-helicity
state would flip the spin. Likewise, the electron can only
backward scatter into the negative-helicity state, since
scattering to the positive-helicity state would flip the
spin. This is why the differential cross sections vanish
at ✓ = ⇡ for the blue curves, and ✓ = 0 for the or-
ange curves. The same reasoning can be applied to scat-
tering between k? states in the negative-energy regime
[Fig. 4(b) and (c)]. Here, an incident k

>

electron cannot
backscatter to another k

>

state without flipping its spin.
For scattering from k

>

to k
<

, there is a subtlety to this
argument. Because the group velocity in the k

<

state is
directed oppositely to that in the k

>

state, the outgoing
flux measured in the k

<

channel at ✓ = 0 will correspond
to the wave vector �k

<

ˆ

x. This is a spin-flipped state
and will thus have zero contribution to the cross section.
Hence, the orange lines in Fig. 4 go to zero at ✓ = 0.
Likewise, if the incident wave vector is k

<

ˆ

x, then the
spin-flipped states would be �k

<

ˆ

x, detected at ✓ = 0,

and �k
>

ˆ

x, detected at ✓ = ⇡, corresponding to the ze-
roes of the differential cross section in those channels (red
and green respectively in Fig. 4).

C. Total cross section

Integrating Eq. (32) and (33) over ✓ gives the total
cross sections �? for an incident k? state,

�
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2

k
>

X

l
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✓
c
l

(�i)l

2

p
2

◆�
, (39)

�
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=

2

k
<

X

l


1 � 8Re

✓
˜b
l

(�i)l

2

p
2

◆�
. (40)

These are plotted in Fig. 5 as a function of the energy.
For any value of the dimensionless radius of the scatterer
k0R, there is a singularity in the cross section at the
band bottom E ! �E0, due to the squared delta func-
tions in Eq. (38). Equivalently, from Eq. (39) and (40) we
get the divergent sum �? ! (2/k0)

P
l

1 as E ! �E0.
Threshold singularities in the cross section are common
to scattering problems in 2D (see Appendix A); however,
in the conventional case without spin-orbit coupling such
singularities are typically due to a prefactor of 1/k which
diverges as k ! 0 at the bottom of a parabolic band [23].
In the Rashba case, it is the sum over partial waves rather
than the prefactor 1/k0 that diverges at the band bot-
tom, since in that limit all l channels contribute equally
(Fig. 3).

In Fig. 5(c), we zoom in on the region near the band
bottom, and plot the total cross section �

>

as a function
of � =

p
1 � |E|/E0 on a log-linear scale. As the energy

approaches the band bottom, the cross section increases
in discrete steps and displays a series of plateaus that
are increasingly flat as � tends to zero on a logarithmic
scale, with the onset of each plateau occurring at the
threshold energy where a new l channel contributes to the
off-diagonal S-matrix elements [compare with Fig. 3(b)].
A similar behavior is found for �

<

. On these plateaus
the total cross section is quantized in units of 4/k0,

�? =

4n

k0
, n = 0, 1, 2, . . . , (41)

independently of the scatterer radius R. The way �? ap-
proaches infinity as the energy nears the band bottom is
thus much more complex than the smooth 1/k / 1/

p
E

divergence (moderated by a logarithmic factor) found in
the case without spin-orbit coupling where the l = 0

partial wave (s-wave) dominates the low-energy behav-
ior [23]. An analogy with Landauer quantization of the
conductance in 1D [24–26] may lead one to conjecture
that the quantization of the total cross section (41) in
the low-energy limit is a direct consequence of the emer-
gent 1D behavior in that limit, observed in the extreme
anisotropy of the differential cross section (38).

❖ In the low energy limit, scattering looks 1D!
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where s(k) ⌘ sgn(k � k
0

).
This conversion allows us to write the momentum-

space T -matrix starting with the S-matrix in the E, l, s
µ

basis. From (29),
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where we used the fact that angular momentum conser-

vation and elastic scattering guarantee the S-matrix as
diagonal in l and E. Thus we finally have
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Letting k = k
⌫

, k0 = k
µ

, and noting that |k
0

� k
⌫

| =
|k

0

� k
µ

| = k
0

�, we recover (27).
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FIG. 3. (a) Diagonal and (b) off-diagonal transition prob-
abilities from the S-matrix elements for partial waves l =
0, 1, 2, 3, 4, as a function of � =
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1� |E|/E0. In both plots

k0R = 0.1.

Using the asymptotic form of the incident and scattered
wave functions, the fluxes are given by
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FIG. 4. Polar plots of differential cross section for scattering
between: (a) helicity bands at positive energies (E = 2E0,
E = 4E0, E = 6E0), (b) k? states at negative energies (E =
�0.01E0, E = �0.5E0, E = �0.99E0), and (c) k? states
near the band bottom (E = �0.999E0, E = �0.9999E0, E =
�0.99999E0). In each plot, k0R is set to 0.1. The radius of
each curve is the magnitude of k0|�ii|2. In the bottom figure,
there is no visible distinction between |�><|2 and |�<<|2, as
with |�>>|2 and |�<>|2, so only one of each is plotted.
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where s(k) ⌘ sgn(k � k
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).
This conversion allows us to write the momentum-

space T -matrix starting with the S-matrix in the E, l, s
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where we used the fact that angular momentum conser-

vation and elastic scattering guarantee the S-matrix as
diagonal in l and E. Thus we finally have
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Letting k = k
⌫

, k0 = k
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, and noting that |k
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| =
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�, we recover (27).
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E = 4E0, E = 6E0), (b) k? states at negative energies (E =
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�0.99999E0). In each plot, k0R is set to 0.1. The radius of
each curve is the magnitude of k0|�ii|2. In the bottom figure,
there is no visible distinction between |�><|2 and |�<<|2, as
with |�>>|2 and |�<>|2, so only one of each is plotted.
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where we have changed the integration variable using q ⌘
k
0

(1 + ✏). Thus, to order � in the potential, we approxi-
mate the on-shell terms as V

ji
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, k

µ

) ⇡ V
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, k
0

ˆk
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),
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, the T -matrix is
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Writing the T -matrix in partial wave components just as
we did with the potential, the Born series simplifies to
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Equation (53) may be solved algebraically for each par-
tial wave component. Since the diagonal parts of the po-
tential are equal, this equation decouples into two pairs
of coupled equations. For the lower helicity band, the
relevant pair is
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The J± integrals correspond to transitions between dif-
ferent helicity bands, and these are expected to have a
negligible contribution to the low energy scattering. In-
deed, one can show that J± ⇠ ⇤ << 1 and so
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The energy dependence of the T -matrix is entirely deter-
mined by the integral I l� of equation (56). We claim that
to leading order in �, this integral is approximated by
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The low-energy limit of the S-matrix (28) is thus simply
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Before proving (60), lets examine some of the conse-
quences of this energy dependence. Firstly, the T -matrix
scales as the square root of the gap between the scat-
tering energy and the ground state energy, in contrast
with the inverse logarithm dependence found in conven-
tional 2D systems (41). Furthermore, it is independent
of any details of potential (its range or strength). Lastly,
this result is independent of partial wave number l. The
usual intuition of low energy physics being dominated by
s-wave scattering does not apply to the Rashba system.

The energy dependence in (62) is very telling. Suppose
we were to look for the universal form of a low-energy T -
matrix in a one-dimensional scattering problem with a
conventional quadratic dispersion. We could follow the
same reasoning used above. A finite-range on-shell poten-
tial in momentum space has a low energy approximation
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If we only consider the lowest order terms in E, and make
use of the fact that the potential is short-ranged, we get
the analytic approximation for T
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0 r > R

Example: Hard Disk

❖ S-matrix decomposed in partial 
waves.



Scattering Formalism

❖ For negative energies:

lower helicity S matrix
lower helicity T-matrix

partial wave expansion

k7 indices

3

This is accomplished by noting from (4) and (A4), the
mathematical relation

k± = ⌥k7, (20)

valid for any negative energy. (15) then reads
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which is the component of the helicity transform of T in-
volving only transitions within the negative helicity state.
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The Lippman-Schwinger equation finally reads
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Comparing (25) to (18), we may simply read off the

relation between the T -matrix and scattering amplitude:
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Rotational symmetry of the Hamiltonian allows us to ex-
pand the T -matrix in partial wave components as well,
so that we may invert (27) to get
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with the appropriate change of basis. See appendix B for
details.

B. Cross section and optical theorem

To complete our scattering formalism we determine the
differential cross section. Beginning with Fermi’s golden
rule, the transition rate is connected to the T -matrix via
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Furthermore, the cross section in this channel is simply
the transition rate divided by the incident flux

d�

d✓

����
µ⌫

=

w
µ!⌫

|j
µ

| (32)

=

m2

2⇡

k
⌫

k2
0

�2
|Tkµk⌫

�� |2 (33)

=

1

2⇡k
µ

|
1X

l=�1
eil✓(Sl

µ⌫

� I
µ⌫

)|2. (34)

This last expression was denoted |�
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denotes the off-diagonal component with first
index µ, and we used the unitarity condition of the S-
matrix (|Sl
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|2) in line (37). The final form
of this cross section makes it clear that the diagonal part
of the T -matrix in (27) obeys an optical theorem, since
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IV. RASHBA T -MATRIX

With this scattering formalism at hand, we may com-
pute any scattering observable in a Rashba system with

2

wavefunction is chosen to be a negative helicity plane
wave with wavevector k oriented at an angle ✓

k

with
respect to the x-axis.
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We can relate this to the T -matrix through the defini-
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where |ii is the initial state, and | i is the scattering
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Substituting (10) into (9) and (9) into (5), we obtain a
modified Lippman-Schwinger equation
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To proceed any further requires knowing the position-
space Green’s function. This is derived in Appendix A
(equation (A7) for � = �0, equation (A13) for � 6= �0). To
match with the S-matrix, we must consider the asymp-
totic wavefunction, which for a finite range potential,
amounts to imposing r >> r0, |r � r
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✓
r�r

0 ⇡ ✓
r

in the Green’s function. Using the asymptotic
form of the Hankel function
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Since the r

0 dependence of the Green’s function has
been isolated, we can now evaluate the integrals in (11)
to get the asymptotic wavefunction
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A. Relation between T and S matrices

At this point we orient the x-axis along the incident
wave direction (✓

k

= 0) and recognize that for any nega-
tive energy, the magnitude of the corresponding wavevec-
tor is either k

>

or k
<

using the notation in (4). We write
this as k = k

µ

x̂, where µ =>,<.
To connect the T -matrix to the S-matrix (or equiva-

lently the scattering amplitude), we use the definition of
the S-matrix as the unitary transformation from asymp-
totic ingoing to asymptotic outgoing states. Schemati-
cally,
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In reference [2], the form of the S-matrix for lower-
helicity scattering off of a finite range, circularly symmet-
ric potential was written down. Using a slightly modi-
fied notation, we summarize these results by writing the
asymptotic wavefunction outside of such a potential as
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Here, the indices µ, ⌫ indicate the magnitude of the
wavevector k? as discussed above, s
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The program now is to simply equate (15) and (18).

To do this, we need a sum over wavector magnitudes
⌫ =>,< in (15) rather than helicity index j = +,�.
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We can relate this to the T -matrix through the defini-
tion

T |ii = V | i, (7)

where |ii is the initial state, and | i is the scattering
state. In terms of wavefunctions, we write
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Z
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We will need to Fourier transform the T -matrix to
momentum-space
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Substituting (10) into (9) and (9) into (5), we obtain a
modified Lippman-Schwinger equation
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To proceed any further requires knowing the position-
space Green’s function. This is derived in Appendix A
(equation (A7) for � = �0, equation (A13) for � 6= �0). To
match with the S-matrix, we must consider the asymp-
totic wavefunction, which for a finite range potential,
amounts to imposing r >> r0, |r � r

0| ⇡ r � r̂ · r0 and
✓
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0 ⇡ ✓
r

in the Green’s function. Using the asymptotic
form of the Hankel function
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we obtain the asymptotic Green’s function
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where k
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j

r̂ and k
j

is given in equations (A3), (A4).
We have also defined the matrix
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Since the r

0 dependence of the Green’s function has
been isolated, we can now evaluate the integrals in (11)
to get the asymptotic wavefunction
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A. Relation between T and S matrices

At this point we orient the x-axis along the incident
wave direction (✓

k

= 0) and recognize that for any nega-
tive energy, the magnitude of the corresponding wavevec-
tor is either k

>

or k
<

using the notation in (4). We write
this as k = k

µ

x̂, where µ =>,<.
To connect the T -matrix to the S-matrix (or equiva-

lently the scattering amplitude), we use the definition of
the S-matrix as the unitary transformation from asymp-
totic ingoing to asymptotic outgoing states. Schemati-
cally,
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In reference [2], the form of the S-matrix for lower-
helicity scattering off of a finite range, circularly symmet-
ric potential was written down. Using a slightly modi-
fied notation, we summarize these results by writing the
asymptotic wavefunction outside of such a potential as
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Here, the indices µ, ⌫ indicate the magnitude of the
wavevector k? as discussed above, s

µ

⌘ sgn(k
µ

� k
0

),
and  

µ

(r;E) ⌘  
k

(r)|
k=kµx̂. The common spinor factor

⌘sµ(✓) is formally equivalent to the definition (3) due to
the fact that the group velocity is oppositely directed for
the < state (see [2] for details). The factor of 2m

p
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in front of the sum is chosen to make f
µ⌫

consistent with
the conventional scattering amplitude in two dimensions
[3]. With these conventions, the scattering amplitude has
the following relation to the S-matrix expanded in partial
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The program now is to simply equate (15) and (18).

To do this, we need a sum over wavector magnitudes
⌫ =>,< in (15) rather than helicity index j = +,�.

❖ Relate T and S matrices through Lippmann-Schwinger equation:



Scattering Formalism

❖ Cross-sections from Fermi’s golden rule:

3

This is accomplished by noting from (4) and (A4), the
mathematical relation

k± = ⌥k7, (20)

valid for any negative energy. (15) then reads
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where k? ⌘ k?r̂. For the k
>

term, we simply note that
since ✓

k> = ✓
r

and ✓
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= 0,
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)

†Tk>k⌘�(0) = Tk>k

�� , (22)

which is the component of the helicity transform of T in-
volving only transitions within the negative helicity state.
For the k

<

term, we use the fact that �k

<

= k+ =

�|k
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|r̂ to write the eigenspinors as
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which makes it clear that
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The Lippman-Schwinger equation finally reads
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(25)

Comparing (25) to (18), we may simply read off the
relation between the T -matrix and scattering amplitude:

T
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Or, in terms of the S-matrix written in (19),
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using k
>
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= 2k
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�, and letting ✓ ⌘ ✓
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= ✓
k⌫ � ✓

kµ .
The above result can be shown to be equivalent to the

usual definition of the S-matrix (see e.g. [4])

S
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� 2⇡i�(E
f
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)T
fi

, (28)

with the appropriate change of basis. See appendix B for
details.

B. Cross section and optical theorem

To complete our scattering formalism we determine the
differential cross section. Beginning with Fermi’s golden
rule, the transition rate is connected to the T -matrix via

w
µ!⌫
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)d✓, (29)

where ⇢(E
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) is the density of final states in the channel
⌫ within an angle d✓ of ✓:
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k
⌫

k
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�
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Furthermore, the cross section in this channel is simply
the transition rate divided by the incident flux
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This last expression was denoted |�
µ⌫

|2 in reference [2].
Integrating over angles and summing over scattering
channels, gives the total cross section for an incident k

µ

wave
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where Sl

µ�µ

denotes the off-diagonal component with first
index µ, and we used the unitarity condition of the S-
matrix (|Sl

µ�µ

|2 = 1� |S
µµ

|2) in line (36). The final form
of this cross section makes it clear that the diagonal part
of the T -matrix in (27) obeys an optical theorem, since
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IV. RASHBA T -MATRIX

With this scattering formalism at hand, we may com-
pute any scattering observable in a Rashba system with

3

This is accomplished by noting from (4) and (A4), the
mathematical relation

k± = ⌥k7, (20)

valid for any negative energy. (15) then reads
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where k? ⌘ k?r̂. For the k
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term, we simply note that
since ✓

k> = ✓
r

and ✓
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= 0,
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)

†Tk>k⌘�(0) = Tk>k

�� , (22)

which is the component of the helicity transform of T in-
volving only transitions within the negative helicity state.
For the k

<

term, we use the fact that �k

<

= k+ =

�|k
+

|r̂ to write the eigenspinors as

⌘+(✓
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which makes it clear that
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The Lippman-Schwinger equation finally reads
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(25)

Comparing (25) to (18), we may simply read off the
relation between the T -matrix and scattering amplitude:
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Or, in terms of the S-matrix written in (19),
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using k
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= 2k
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�, and letting ✓ ⌘ ✓
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kµ .
The above result can be shown to be equivalent to the

usual definition of the S-matrix (see e.g. [4])
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, (28)

with the appropriate change of basis. See appendix B for
details.

B. Cross section and optical theorem

To complete our scattering formalism we determine the
differential cross section. Beginning with Fermi’s golden
rule, the transition rate is connected to the T -matrix via

w
µ!⌫

d✓ = 2⇡|Tkµk⌫
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⌫

)d✓, (29)

where ⇢(E
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) is the density of final states in the channel
⌫ within an angle d✓ of ✓:
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Furthermore, the cross section in this channel is simply
the transition rate divided by the incident flux
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This last expression was denoted |�
µ⌫

|2 in reference [2].
Integrating over angles and summing over scattering
channels, gives the total cross section for an incident k

µ

wave
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where Sl
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denotes the off-diagonal component with first
index µ, and we used the unitarity condition of the S-
matrix (|Sl

µ�µ

|2 = 1� |S
µµ

|2) in line (36). The final form
of this cross section makes it clear that the diagonal part
of the T -matrix in (27) obeys an optical theorem, since
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IV. RASHBA T -MATRIX

With this scattering formalism at hand, we may com-
pute any scattering observable in a Rashba system with

3

This is accomplished by noting from (4) and (A4), the
mathematical relation

k± = ⌥k7, (20)

valid for any negative energy. (15) then reads
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where k? ⌘ k?r̂. For the k
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which is the component of the helicity transform of T in-
volving only transitions within the negative helicity state.
For the k
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term, we use the fact that �k
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which makes it clear that
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The Lippman-Schwinger equation finally reads
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Comparing (25) to (18), we may simply read off the
relation between the T -matrix and scattering amplitude:
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Or, in terms of the S-matrix written in (19),
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The above result can be shown to be equivalent to the

usual definition of the S-matrix (see e.g. [4])
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with the appropriate change of basis. See appendix B for
details.

B. Cross section and optical theorem

To complete our scattering formalism we determine the
differential cross section. Beginning with Fermi’s golden
rule, the transition rate is connected to the T -matrix via

w
µ!⌫

d✓ = 2⇡|Tkµk⌫

�� |2⇢(E
⌫

)d✓, (29)

where ⇢(E
⌫

) is the density of final states in the channel
⌫ within an angle d✓ of ✓:

⇢(E
⌫

) =

Z 1

0

dk

(2⇡)2
k�(E

⌫

� E(k)) =
m

(2⇡)2
k
⌫

k
0

�
. (30)

Furthermore, the cross section in this channel is simply
the transition rate divided by the incident flux
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This last expression was denoted |�
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Integrating over angles and summing over scattering
channels, gives the total cross section for an incident k
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IV. RASHBA T -MATRIX

With this scattering formalism at hand, we may com-
pute any scattering observable in a Rashba system with

❖ Optical theorem:

3

This is accomplished by noting from (4) and (A4), the
mathematical relation

k± = ⌥k7, (20)

valid for any negative energy. (15) then reads
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which is the component of the helicity transform of T in-
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Comparing (25) to (18), we may simply read off the
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The above result can be shown to be equivalent to the

usual definition of the S-matrix (see e.g. [4])
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with the appropriate change of basis. See appendix B for
details.

B. Cross section and optical theorem

To complete our scattering formalism we determine the
differential cross section. Beginning with Fermi’s golden
rule, the transition rate is connected to the T -matrix via
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Furthermore, the cross section in this channel is simply
the transition rate divided by the incident flux
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channels, gives the total cross section for an incident k

µ

wave

�
µ

=

Z
2⇡

0

X

⌫

1

2⇡k
µ

����
1X

l=�1
eil✓(Sl

µ⌫

� �
µ⌫

)

����
2

(34)

=

1

k
µ

1X

l=�1
(|Sl

µµ

� 1|2 + |Sl

µ�µ

|2) (35)

=

1

k
µ

1X

l=�1
(2� (Sl

µµ

+ Sl⇤
µµ

)) (36)

=

2

k
µ

1X

l=�1
(1� Re(Sl

µµ

)), (37)

where Sl

µ�µ

denotes the off-diagonal component with first
index µ, and we used the unitarity condition of the S-
matrix (|Sl

µ�µ

|2 = 1� |S
µµ

|2) in line (36). The final form
of this cross section makes it clear that the diagonal part
of the T -matrix in (27) obeys an optical theorem, since

Im(T
kµkµ

�� (✓ = 0)) = � k
0

�

mk
µ

1X

l=�1
(1� Re(Sl

µµ

)) (38)

= �k
0

�

2m
�
µ

. (39)

IV. RASHBA T -MATRIX

With this scattering formalism at hand, we may com-
pute any scattering observable in a Rashba system with

3

This is accomplished by noting from (4) and (A4), the
mathematical relation
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valid for any negative energy. (15) then reads
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details.

B. Cross section and optical theorem
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B. Cross section and optical theorem
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IV. RASHBA T -MATRIX

With this scattering formalism at hand, we may com-
pute any scattering observable in a Rashba system with

Is there a generic form for the T-matrix?
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Generic Rashba T-matrix

4

E < 0, provided we know the T -matrix T
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�� . In a
conventional 2D system without spin-orbit coupling, the
T -matrix takes on a form at low energies that is domi-
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where E
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is a parameter that encodes the potential V ,
and is related to the scattering length (see e.g. [5], [6]).
We now contrast this with the universal form of the low-
energy Rashba T -matrix for any circularly symmetric,
spin-independent potential of finite range. First, we will
need to impose a momentum cutoff
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to the momentum shell RG approach in the many-body
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Now the T -matrix is defined by the Born series

T = V + V G+T. (46)

We write this in the momentum, helicity basis |k, ii in
which the Green’s function is diagonal
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We will be interested in looking at cases in which the
magnitude of the potential is not necessarily small, and

FIG. 1. (a) k-space contours and (b) low-energy spectrum
for a single Rashba electron. The shaded region shows the
allowed virtual transitions with |k � k0| < ⇤̃ to be incorpo-
rated in the T -matrix. The orange lines show the continuum
of negative helicity eigenstates. The blue line in (b) is the
positive helicity branch.

a truncation of the Born series is useless. Instead we
expand the potential about the ground state wavevector
k
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. More precisely, let us examine the V l components
given by (45). For the on-shell terms V
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❖ Claim: The low-energy T-matrix takes a universal form for any circular-symmetric, 
finite range, spin-independent potential.

Allowed virtual transitions
within cutoff
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finite range, spin-independent potential.

Generic Rashba T-matrix

⇥ ⌘
⇥

+
⇥ ⇥

+ . . .

Born series:

“On-shell” “Off-shell”

4

E < 0, provided we know the T -matrix T
kµk⌫

�� . In a
conventional 2D system without spin-orbit coupling, the
T -matrix takes on a form at low energies that is domi-
nated by the s-wave term.

Tkk

0
⇡ T 0

(E) ⇡ 4/m

i� 1

⇡

ln(E/E
a

)

, (41)

where E
a

is a parameter that encodes the potential V ,
and is related to the scattering length (see e.g. [5], [6]).
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FIG. 1. (a) k-space contours and (b) low-energy spectrum
for a single Rashba electron. The shaded region shows the
allowed virtual transitions with |k � k0| < ⇤̃ to be incorpo-
rated in the T -matrix. The orange lines show the continuum
of negative helicity eigenstates. The blue line in (b) is the
positive helicity branch.

We want to expand the potential about the ground
state wavevector k
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allowed virtual transitions with |k � k0| < ⇤̃ to be incorpo-
rated in the T -matrix. The orange lines show the continuum
of negative helicity eigenstates. The blue line in (b) is the
positive helicity branch.
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We will be interested in looking at cases in which the
magnitude of the potential is not necessarily small, and

FIG. 1. (a) k-space contours and (b) low-energy spectrum
for a single Rashba electron. The shaded region shows the
allowed virtual transitions with |k � k0| < ⇤̃ to be incorpo-
rated in the T -matrix. The orange lines show the continuum
of negative helicity eigenstates. The blue line in (b) is the
positive helicity branch.

a truncation of the Born series is useless. Instead we
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We will later argue that the error in this approximation
is O(�2). Writing the T -matrix in partial wave compo-
nents just as we did with the potential, the Born series
simplifies to

1X

l=�1
T l

ji

(k
µ

)eil✓ =

1X

l=�1

1

2

[V l

(k
0

, k
0

) + ijV l+1

(k
0

, k
0

)]eil✓

+

X

n=+,�

1X

l=�1

Z
dq

4⇡
q(V l

(k
0

, q)

+jnV l+1

(k
0

, q))G+

nn

(q)T l

ni

(k
µ

)eil✓.

(53)

Equation (53) may be solved algebraically for each par-
tial wave component. Since the diagonal parts of the po-
tential are equal, this equation decouples into two pairs
of coupled equations. For the lower helicity band, the
relevant pair is
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I l± =

Z
dq

(4⇡)
q[V l

(k
0

, q)⌥ V l+1

(k
0

, q)]G+

��(q) (56)

J l

± =

Z
dq

(4⇡)
q[V l

(k
0

, q)± V l+1

(k
0

, q)]G+

++

(q). (57)

Using the fact that J�I+ = �J
+

I�, we may solve for
T l

�� to get

T l

�� ⇡ 1

2(1� I l�(1� 2J l

+

)� J l

+

)

⇥[V l

(k
0

, k
0

)(1� J l

+

+ J l

�)

+V l+1

(k
0

, k
0

)(1� J l

+

� J l

�)]. (58)

The J± integrals correspond to transitions between dif-
ferent helicity bands, and these are expected to have a
negligible contribution to the low energy scattering. In-
deed, one can show that J± ⇠ ⇤ ⌧ 1 and so

T l

�� ⇡
1

2

[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

1� I l�
. (59)

The energy dependence of the T -matrix is entirely deter-
mined by the integral I l� of equation (56). We claim that
to leading order in �, this integral is approximated by
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The detailed derivation of this result is left for appendix
C. To leading order in �, we get
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The low-energy limit of the S-matrix (28) is thus simply
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Lets examine some of the consequences of this energy de-
pendence. Firstly, the T -matrix scales as the square root
of the gap between the scattering energy and the ground
state energy, in contrast with the inverse logarithm de-
pendence found in conventional 2D systems (41). Fur-
thermore, it is independent of any details of potential
(its range or strength). Lastly, this result is independent
of partial wave number l. The usual intuition of low en-
ergy physics being dominated by s-wave scattering does
not apply to the Rashba system.

The energy dependence in (63) is very telling. Suppose
we were to look for the universal form of a low-energy T -
matrix in a one-dimensional scattering problem with a
conventional quadratic dispersion. We could follow the
same reasoning used above. A finite-range on-shell poten-
tial in momentum space has a low energy approximation
which is just a constant
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The off-shell components in the integral of (48) may also
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We will argue in appendix C that the error in this ap-
proximation is O(�2). Writing the T -matrix in partial
wave components just as we did with the potential, the
Born series simplifies to
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Equation (53) may be solved algebraically for each par-
tial wave component. Since the diagonal parts of the po-
tential are equal, this equation decouples into two pairs
of coupled equations. For the lower helicity band, the
relevant pair is

T l

��(kµ) ⇡
1

2

[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

+I l�T
l

��(kµ) + J l

�T
l

+�(kµ) (54)

T l

+�(kµ) ⇡
1

2

[V l

(k
0

, k
0

)� V l+1

(k
0

, k
0

)]

+I l
+

T l

��(kµ) + J l

+

T l

+�(kµ), (55)
where we have defined the integrals

I l± =

Z
dq

(4⇡)
q[V l

(k
0

, q)⌥ V l+1

(k
0

, q)]G+

��(q) (56)

J l

± =

Z
dq

(4⇡)
q[V l

(k
0

, q)± V l+1

(k
0

, q)]G+

++

(q). (57)

Using the fact that J�I+ = �J
+

I�, we may solve for
T l

�� to get

T l

�� ⇡ 1

2(1� I l�(1� 2J l

+

)� J l

+

)

⇥[V l

(k
0

, k
0

)(1� J l

+

+ J l

�)

+V l+1

(k
0

, k
0

)(1� J l

+

� J l

�)]. (58)

The J± integrals correspond to transitions between dif-
ferent helicity bands, and these are expected to have a
negligible contribution to the low energy scattering. In-
deed, one can show that J± ⇠ ⇤ ⌧ 1 and so
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The energy dependence of the T -matrix is entirely deter-
mined by the integral I l� of equation (56). We claim that
to leading order in �, this integral is approximated by
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The detailed derivation of this result is left for appendix
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Let us examine some of the consequences of this energy
dependence. Firstly, the T -matrix scales as the square
root of the gap between the scattering energy and the
ground state energy, in contrast with the inverse loga-
rithm dependence found in conventional 2D systems (41).
Furthermore, it is independent of any details of potential
(its range or strength). Lastly, this result is independent
of partial wave number l. The usual intuition of low en-
ergy physics being dominated by s-wave scattering does
not apply to the Rashba system.

The energy dependence in (64) is very telling. Suppose
we were to look for the universal form of a low-energy T -
matrix in a one-dimensional scattering problem with a
conventional quadratic dispersion. We could follow the
same reasoning used above. A finite-range on-shell poten-
tial in momentum space has a low energy approximation
which is just a constant
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We will argue in appendix C that the error in this ap-
proximation is O(�2). Writing the T -matrix in partial
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Born series simplifies to
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Equation (53) may be solved algebraically for each par-
tial wave component. Since the diagonal parts of the po-
tential are equal, this equation decouples into two pairs
of coupled equations. For the lower helicity band, the
relevant pair is
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where we have defined the integrals
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The J± integrals correspond to transitions between dif-
ferent helicity bands, and these are expected to have a
negligible contribution to the low energy scattering. In-
deed, one can show that J± ⇠ ⇤ ⌧ 1 and so

T l

�� ⇡
1

2

[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

1� I l�
. (59)

The energy dependence of the T -matrix is entirely deter-
mined by the integral I l� of equation (56). We claim that
to leading order in �, this integral is approximated by
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The detailed derivation of this result is left for appendix
C. It is convenient to define a new dimensionless param-
eter
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Then to leading order in �, we can write the T -matrix as
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The low-energy limit of the S-matrix (28) is thus simply
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Let us examine some of the consequences of this energy
dependence. Firstly, the T -matrix scales as the square
root of the gap between the scattering energy and the
ground state energy, in contrast with the inverse loga-
rithm dependence found in conventional 2D systems (41).
Furthermore, it is independent of any details of potential
(its range or strength). Lastly, this result is independent
of partial wave number l. The usual intuition of low en-
ergy physics being dominated by s-wave scattering does
not apply to the Rashba system.

The energy dependence in (64) is very telling. Suppose
we were to look for the universal form of a low-energy T -
matrix in a one-dimensional scattering problem with a
conventional quadratic dispersion. We could follow the
same reasoning used above. A finite-range on-shell poten-
tial in momentum space has a low energy approximation
which is just a constant

V (k, k0) ⇡ lim

k,k

0!0

V (k, k0) =

Z 1

�1
dxV (x) ⌘ V. (66)
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where we have changed the integration variable using q ⌘
k
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(1 + ✏). Thus, to order � in the potential, we approxi-
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is independent of this magnitude as well
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We will argue in appendix C that the error in this ap-
proximation is O(�2). Writing the T -matrix in partial
wave components just as we did with the potential, the
Born series simplifies to
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Equation (53) may be solved algebraically for each par-
tial wave component. Since the diagonal parts of the po-
tential are equal, this equation decouples into two pairs
of coupled equations. For the lower helicity band, the
relevant pair is
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The J± integrals correspond to transitions between dif-
ferent helicity bands, and these are expected to have a
negligible contribution to the low energy scattering. In-
deed, one can show that J± ⇠ ⇤ ⌧ 1 and so
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The energy dependence of the T -matrix is entirely deter-
mined by the integral I l� of equation (56). We claim that
to leading order in �, this integral is approximated by
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The detailed derivation of this result is left for appendix
C. It is convenient to define a new dimensionless param-
eter
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Then to leading order in �, we can write the T -matrix as
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The low-energy limit of the S-matrix (28) is thus simply
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Let us examine some of the consequences of this energy
dependence. Firstly, the T -matrix scales as the square
root of the gap between the scattering energy and the
ground state energy, in contrast with the inverse loga-
rithm dependence found in conventional 2D systems (41).
Furthermore, it is independent of any details of potential
(its range or strength). Lastly, this result is independent
of partial wave number l. The usual intuition of low en-
ergy physics being dominated by s-wave scattering does
not apply to the Rashba system.

The energy dependence in (64) is very telling. Suppose
we were to look for the universal form of a low-energy T -
matrix in a one-dimensional scattering problem with a
conventional quadratic dispersion. We could follow the
same reasoning used above. A finite-range on-shell poten-
tial in momentum space has a low energy approximation
which is just a constant

V (k, k0) ⇡ lim

k,k

0!0

V (k, k0) =

Z 1

�1
dxV (x) ⌘ V. (66)



Generic Rashba T-matrix
❖ Remarks:

1) To lowest order, T-matrix is independent of 
potential and partial wave!

2) We obtain previous S-matrix limit.

3) The energy dependence is fundamentally different 
than in conventional 2D scattering.

4) The energy dependence is that of a 1D T-matrix!
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We will later argue that the error in this approximation
is O(�2). Writing the T -matrix in partial wave compo-
nents just as we did with the potential, the Born series
simplifies to
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Equation (53) may be solved algebraically for each par-
tial wave component. Since the diagonal parts of the po-
tential are equal, this equation decouples into two pairs
of coupled equations. For the lower helicity band, the
relevant pair is
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The J± integrals correspond to transitions between dif-
ferent helicity bands, and these are expected to have a
negligible contribution to the low energy scattering. In-
deed, one can show that J± ⇠ ⇤ ⌧ 1 and so
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The energy dependence of the T -matrix is entirely deter-
mined by the integral I l� of equation (56). We claim that
to leading order in �, this integral is approximated by
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The detailed derivation of this result is left for appendix
C. To leading order in �, we get
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The low-energy limit of the S-matrix (28) is thus simply
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Lets examine some of the consequences of this energy de-
pendence. Firstly, the T -matrix scales as the square root
of the gap between the scattering energy and the ground
state energy, in contrast with the inverse logarithm de-
pendence found in conventional 2D systems (41). Fur-
thermore, it is independent of any details of potential
(its range or strength). Lastly, this result is independent
of partial wave number l. The usual intuition of low en-
ergy physics being dominated by s-wave scattering does
not apply to the Rashba system.

The energy dependence in (63) is very telling. Suppose
we were to look for the universal form of a low-energy T -
matrix in a one-dimensional scattering problem with a
conventional quadratic dispersion. We could follow the
same reasoning used above. A finite-range on-shell poten-
tial in momentum space has a low energy approximation
which is just a constant
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Equation (53) may be solved algebraically for each par-
tial wave component. Since the diagonal parts of the po-
tential are equal, this equation decouples into two pairs
of coupled equations. For the lower helicity band, the
relevant pair is

T l

��(kµ) ⇡
1

2

[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

+I l�T
l

��(kµ) + J l

�T
l

+�(kµ) (54)

T l

+�(kµ) ⇡
1

2

[V l

(k
0

, k
0

)� V l+1

(k
0

, k
0

)]

+I l
+

T l

��(kµ) + J l

+

T l

+�(kµ), (55)

where we have defined the integrals

I l± =

Z
dq

(4⇡)
q[V l

(k
0

, q)⌥ V l+1

(k
0

, q)]G+

��(q) (56)

J l

± =

Z
dq

(4⇡)
q[V l

(k
0

, q)± V l+1

(k
0

, q)]G+

++

(q). (57)

Using the fact that J�I+ = �J
+

I�, we may solve for
T l

�� to get

T l

�� ⇡ 1

2(1� I l�(1� 2J l

+

)� J l

+

)

⇥[V l

(k
0

, k
0

)(1� J l

+

+ J l

�)

+V l+1

(k
0

, k
0

)(1� J l

+

� J l

�)]. (58)

The J± integrals correspond to transitions between dif-
ferent helicity bands, and these are expected to have a
negligible contribution to the low energy scattering. In-
deed, one can show that J± ⇠ ⇤ ⌧ 1 and so
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The energy dependence of the T -matrix is entirely deter-
mined by the integral I l� of equation (56). We claim that
to leading order in �, this integral is approximated by

I l� = �m

2

✓
i

�
+

2

⇡⇤

◆
[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

+O(�) +O(⇤), (60)

so that the T -matrix is

T l

�� =

1

2

[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

1 +

m

2

(

i

�

+

2

⇡⇤

)[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

+O(�2).

(61)

The detailed derivation of this result is left for appendix
C. To leading order in �, we get
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Lets examine some of the consequences of this energy de-
pendence. Firstly, the T -matrix scales as the square root
of the gap between the scattering energy and the ground
state energy, in contrast with the inverse logarithm de-
pendence found in conventional 2D systems (41). Fur-
thermore, it is independent of any details of potential
(its range or strength). Lastly, this result is independent
of partial wave number l. The usual intuition of low en-
ergy physics being dominated by s-wave scattering does
not apply to the Rashba system.

The energy dependence in (63) is very telling. Suppose
we were to look for the universal form of a low-energy T -
matrix in a one-dimensional scattering problem with a
conventional quadratic dispersion. We could follow the
same reasoning used above. A finite-range on-shell poten-
tial in momentum space has a low energy approximation
which is just a constant
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E < 0, provided we know the T -matrix T
kµk⌫

�� . In a
conventional 2D system without spin-orbit coupling, the
T -matrix takes on a form at low energies that is domi-
nated by the s-wave term.

Tkk

0
⇡ T 0

(E) ⇠ 1/m

i� 1

⇡

ln(E/E
a

)

, (41)

where E
a

is a parameter that encodes the potential V ,
and is related to the scattering length (see e.g. [5], [6]).
Before doing any calculation, we can already see that
Rashba T -matrix must have a different energy depen-
dence, simply by looking at the Lippmann-Schwinger
equation (25). Since the coefficient of the scattered wave-
function goes as 1/� for low energies, the T -matrix must
at least be linear in � in order to keep the probability
finite. We now make this explicit by deriving the low-
energy Rashba T -matrix for any circularly symmetric,
spin-independent potential of finite range.

First, we will need to impose a momentum cutoff

k
0

� ˜

⇤ < k < k
0

+

˜

⇤ (42)

to avoid UV and infrared divergences. This amounts to
keeping only the low-energy modes in our model, similar
to the momentum shell RG approach in the many-body
problem [7][8]. The appropriate dimensionless quantity
corresponding to this cutoff is ⇤ ⌘ ˜

⇤/k
0

, so that we will
always enforce the following hierarchy of scales:

� ⌧ ⇤ ⌧ 1. (43)

In the helicity basis denoted by i, j, any central spin-
independent potential may be written as

V
ij

(k, k

0
) =

Z
d2xei(k�k

0
)·xV (x)⌘i(✓

k

0
)

†⌘j(✓
k

) (44)

=

1

2

1X

l=�1
V l

(k, k0)eil(✓k0�✓k)
(1 + ijei(✓k�✓k0 )

)

=

1

2

1X

l=�1
(V l

(k, k0) + ijV l+1

(k, k0))eil✓k0�k ,

(45)
where ✓

k

0�k

⌘ ✓0
k

� ✓
k

, and in the second line, we intro-
duced the partial wave component

V l

(k, k0) =

Z
2⇡

0

d✓
k

0�k

2⇡

Z 1

0

drrV (r)J
0

(|k� k

0|r)eil✓k0�k ,

(46)
where J

0

(|k� k

0|r) is the zeroth order Bessel function of
the first kind.

Now the T -matrix is defined by the Born series

T = V + V G+T. (47)

We write this in the momentum, helicity basis |k, ii in
which the Green’s function is diagonal

T
k⌫kµ

ji

= V
ji

(k

⌫

, k

µ

)

+

X

n=+,�

Z
d2q

(2⇡)2
V
jn

(k

⌫

, q)G+

nn

(q)T
qkµ

ni

.(48)

FIG. 1. (a) k-space contours and (b) low-energy spectrum
for a single Rashba electron. The shaded region shows the
allowed virtual transitions with |k � k0| < ⇤̃ to be incorpo-
rated in the T -matrix. The orange lines show the continuum
of negative helicity eigenstates. The blue line in (b) is the
positive helicity branch.

We want to expand the potential about the ground
state wavevector k

0

. More precisely, let us examine the
V l components given by (46). For the on-shell terms
V
ji

(k

µ

, k

⌫

) in (48), the argument of this Bessel function
is

|k
µ

� k

⌫

|r = r
q

k2
µ

+ k2
⌫

� 2k
µ

k
⌫

cos ✓
k

0�k

(49)

=

p
2k

0

r
p

1� cos ✓
k

0�k

+O(�). (50)

The off-shell components in the integral of (48) may also
be expanded about � = 0. The argument of the Bessel
function becomes

|k
⌫

� q|r =

p
2k

0

r
p
(1 + ✏)(1� cos ✓

k

0�k

)+O(�), (51)
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where we have changed the integration variable using q ⌘
k
0

(1 + ✏). Thus, to order � in the potential, we approxi-
mate the on-shell terms as V

ji

(k

⌫

, k

µ

) ⇡ V
ji

(k
0

ˆk
⌫

, k
0

ˆk
µ

),
and the off-shell terms as V

ji

(k

⌫

, q) ⇡ V
ji

(k
0

ˆk
⌫

, q). This
is a crucial approximation. Since now the right hand side
of (48) is independent of the magnitude k

⌫

, the T -matrix
is independent of this magnitude as well

T
k⌫kµ

ij

⇡ T
ij

(

ˆk
⌫

,k
µ

). (52)

We will later argue that the error in this approximation
is O(�2). Writing the T -matrix in partial wave compo-
nents just as we did with the potential, the Born series
simplifies to

1X

l=�1
T l

ji

(k
µ

)eil✓ =

1X

l=�1

1

2

[V l

(k
0

, k
0

) + ijV l+1

(k
0

, k
0

)]eil✓

+

X

n=+,�

1X

l=�1

Z
dq

4⇡
q(V l

(k
0

, q)

+jnV l+1

(k
0

, q))G+

nn

(q)T l

ni

(k
µ

)eil✓.

(53)

Equation (53) may be solved algebraically for each par-
tial wave component. Since the diagonal parts of the po-
tential are equal, this equation decouples into two pairs
of coupled equations. For the lower helicity band, the
relevant pair is

T l

��(kµ) ⇡
1

2

[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

+I l�T
l

��(kµ) + J l

�T
l

+�(kµ) (54)

T l

+�(kµ) ⇡
1

2

[V l

(k
0

, k
0

)� V l+1

(k
0

, k
0

)]

+I l
+

T l

��(kµ) + J l

+

T l

+�(kµ), (55)

where we have defined the integrals

I l± =

Z
dq

(4⇡)
q[V l

(k
0

, q)⌥ V l+1

(k
0

, q)]G+

��(q) (56)

J l

± =

Z
dq

(4⇡)
q[V l

(k
0

, q)± V l+1

(k
0

, q)]G+

++

(q). (57)

Using the fact that J�I+ = �J
+

I�, we may solve for
T l

�� to get

T l

�� ⇡ 1

2(1� I l�(1� 2J l

+

)� J l

+

)

⇥[V l

(k
0

, k
0

)(1� J l

+

+ J l

�)

+V l+1

(k
0

, k
0

)(1� J l

+

� J l

�)]. (58)

The J± integrals correspond to transitions between dif-
ferent helicity bands, and these are expected to have a
negligible contribution to the low energy scattering. In-
deed, one can show that J± ⇠ ⇤ ⌧ 1 and so

T l

�� ⇡
1

2

[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

1� I l�
. (59)

The energy dependence of the T -matrix is entirely deter-
mined by the integral I l� of equation (56). We claim that
to leading order in �, this integral is approximated by

I l� = �m

2

✓
i

�
+

2
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◆
[V l

(k
0

, k
0

) + V l+1
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0

, k
0
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+O(�) +O(⇤), (60)

so that the T -matrix is

T l

�� =
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2
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(k
0

, k
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) + V l+1

(k
0

, k
0

)]

1 +
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)[V l

(k
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, k
0

) + V l+1

(k
0

, k
0

)]

+O(�2).

(61)

The detailed derivation of this result is left for appendix
C. To leading order in �, we get

T l

�� ⇡
1

2

[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

1 +

im
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(k
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) + V l+1
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(62)

= � i�

m
+O(�2). (63)

The low-energy limit of the S-matrix (28) is thus simply

Sl

=

✓
0 �1

�1 0

◆
. (64)

Lets examine some of the consequences of this energy de-
pendence. Firstly, the T -matrix scales as the square root
of the gap between the scattering energy and the ground
state energy, in contrast with the inverse logarithm de-
pendence found in conventional 2D systems (41). Fur-
thermore, it is independent of any details of potential
(its range or strength). Lastly, this result is independent
of partial wave number l. The usual intuition of low en-
ergy physics being dominated by s-wave scattering does
not apply to the Rashba system.

The energy dependence in (63) is very telling. Suppose
we were to look for the universal form of a low-energy T -
matrix in a one-dimensional scattering problem with a
conventional quadratic dispersion. We could follow the
same reasoning used above. A finite-range on-shell poten-
tial in momentum space has a low energy approximation
which is just a constant

V (k, k0) ⇡ lim

k,k

0!0

V (k, k0) =

Z 1

�1
dxV (x) ⌘ V. (65)

The momentum-space T -matrix must again be indepen-
dent of k0 in this approximation, so that

T k

0
k ⇡ T (k)

= V +

✓Z 1

�1
dx

Z 1

�1

dq

2⇡

eiqxV (x)
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2mEx
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(66)
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in the small parameter
p
�2 � x < ⇤ << 1. The square

brackets above may be expanded in this parameter to
give [�

n,0

+ O(�2 � x)]. The fact that no terms of orderp
�2 � x appear in these brackets is due to the interfer-

ence between q < k
0

and q > k
0

states. It is these absent
terms that would have yielded the logarithmic depen-
dence ln �/⇤ were this conventional 2D scattering. With
this approximation, the integrals are readily evaluated as

Re(I l�) ⇡
m

2⇡

1X

k=0

2

⇤

(f
0k|l| + f

0k|l+1|),

(78)

where the terms neglected in this approximation are
O(⇤) and O(�2/⇤). Noting that

1X

k=0

f
0k|l| = V l

(k
0

, k
0

), (79)

we summarize this result as

Re(I l�) ⇡
m

⇡⇤
(V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)). (80)

Thus we can approximate the T -matrix more accurately
by

T l

�� ⇡
1

2

[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

1 +

m

2

(

i

�

+

2

⇡⇤

)[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

. (81)

A. Delta function potential

The simplest finite-range potential we can consider is
the delta function

V (r) =
V
0

r
�(r)�(✓), (82)

which has partial wave components V l

(k, k0) = V
0

�
l,0

,
from (46). Since this is independent of momenta, the T
matrix is as well, and there is no need for approximation
at this level. Instead, the T -matrix exactly satisfies the
equations

T 0

�� =

V
0

/2

1� (I0 + J0

)

= T
+�, (83)

where we have made use of the fact that I l
+

= I l� ⌘ I l,
and J l

+

= J l

� ⌘ J l for the delta potential. The integral
J0 and may be ignored since

J0

= 2mV
0

Z
⇤

⇤

d✏

4⇡

(1 + ✏)

�2 � 4(✏+ 1)� ✏2
⇠ O(⇤). (84)

The other integral evaluates to

I0 = 2mV
0

Z
⇤

⇤

d✏

4⇡

(1 + ✏)

�2 � ✏+ i⌘
(85)

⇡ mV
0

2⇡

✓
� i⇡

�
+

2

⇤

◆
, (86)

so that

T 0

�� =

V
0

/2

1 +

m

2

(

i

�

+

2

⇡⇤

)V
0

, (87)

in agreement with (81).
The fact that the only non-zero component of the T -

matrix is l = 0 in this case is an artifact of the unusual
nature of thecontact potential. Next we will investigate
more typical examples where all partial wave components
become important at low energies.

• Discussion of dimensional transmutation without
a scale-invariant Hamiltonian. Perhaps refer to an
appendix explaining renormalization for a T matrix
in conventional 2D delta potential problem?

B. Circular barrier potential

Consider the finite circular barrier

V (r) =

(
V
0

r < R

0 r > R.
(88)

The partial wave components

V l

(k, k0) = V
0

R

Z
2⇡

0

d✓
k

0�k

2⇡

eil✓k0�k

|k� k

0|J1(R|k� k

0|),

(89)
are evaluated numerically. When k = k0 = k

0

, this
is most easily done by summing the first few terms of
(79). Inserting these components into (81) gives the
low energy T -matrix which is plotted in figure 2 for a
short barrier. Along with our approximation, we plot
the results for the first Born approximation T l

�� ⇡
1/2(V l

(k, k0) + V l+1

(k, k0)).
We see that for each l component, there is a thresh-

old energy below which the Born approximation fails to
capture the correct energy dependence. The reason is
most quickly seen from the asymptotic Green’s function
in position-space (13), which is singular at � = 0 (recall
that k

+

+ k� = k
>

� k
<

= 2�). Evidently, it is not
enough to require that the potential be perturbatively
small to use the Born approximation. Instead we require
V0R

2

�

< 1.
We will see below that this qualitative structure of the

T -matrix is reproduced in the delta-shell potential, for
which an exact solution is available.

V. DELTA-SHELL POTENTIAL

We now consider the potential

V (r) = V
0

�(r �R). (90)

So that

V l

(k, k0) = V
0

R

Z
2⇡

0

d✓
k

0�k

2⇡
J
0

(|k� k

0|)eil✓k0�k . (91)
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FIG. 2. Absolute value of the lower-helicity T -matrix as a
function of the dimensionless parameter � for l = 0, 1, 2, ob-
tained from (81) (solid), and from the first Born approx-
imation (dashed). The dimensionles parameters used are
mV0R

2 = 0.1, k0R = 1, ⇤ = 0.1. Note that in the first
Born approximation, T l

�� is a 2⇥ 2 matrix in the k7 states.
However, these four different components are visually indis-
tinguishable at these energies, so here we just show one of
them.

Again, we plot the corresponding value of the T -matrix
approximation (see figure 4). With this potential, we
are awarded an independent check on our approximation.
The S-matrix for the delta-shell potential was computed
directly from matching conditions of the wavefunction
in [2]. With the aid of (27) we may translate this into
the corresponding T -matrix (or vice versa using (28)) and
compare with our approximation.

VI. CONCLUSION

Appendix A: Rashba Green’s function in
position-space

Here we derive the retarded position-space Green’s
function. This derivation can be found in reference [10],
but we include it here for completeness and to standard-
ize the notation. We may write the Green’s function as
a 2⇥ 2 matrix in spin-space

G+

(r, r

0
;E) =

Z
d2k

4⇡2

eik·(r�r

0)

(E � k

2

2m

)

2 � (�k)2 + i✏

⇥
 

E � k

2

2m
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�i�kei✓k E � k

2

2m

!
. (A1)

The angular integral is trivial and for the diagonal part,
one finds

G+

��

(r, r

0
;E) = �m

2⇡

Z 1

0

dkJ
0

(k|r � r

0|)

⇥
✓
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k2 + 2m�k � 2mE � i✏
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◆
. (A2)

��-�� ��-� ��-� ��-�

��-��

��-�

��-�

(a)

FIG. 3. Absolute value of the lower-helicity T -matrix (a) and
diagonal part of the S-matrix (b) as a function of the dimen-
sionless parameter � for l = 0, 1, 2, 3. Curves are obtained
from an exact calculation of the wavefunction (solid), and
from the our approximation (81) (dashed). The dimensionles
parameters used are mV0 = 1, k0R = 0.1, ⇤ = 0.1.

For any energy E, we designate the on-shell upper and
lower helicity wave vectors by

k± = ⌥m�+

p
(m�)2 + 2mE (A3)

= k
0

(� ⌥ 1). (A4)

These determine the poles of the Green’s function, which
are seen from (A2) by partial fraction decomposition.
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.

The first and last terms may be combined, as well as
the second and third to give
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0
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k
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These last integrals may be evaluated with a useful
identity:

Z 1

0

dtJ
⌫

(at)
t

t2 � z2
=

⇡i

2

H+

⌫

(az), (A6)
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in the small parameter
p
�2 � x < ⇤ << 1. The square

brackets above may be expanded in this parameter to
give [�

n,0

+ O(�2 � x)]. The fact that no terms of orderp
�2 � x appear in these brackets is due to the interfer-

ence between q < k
0

and q > k
0

states. It is these absent
terms that would have yielded the logarithmic depen-
dence ln �/⇤ were this conventional 2D scattering. With
this approximation, the integrals are readily evaluated as
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m
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1X

k=0

2

⇤
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0k|l| + f

0k|l+1|),

(78)

where the terms neglected in this approximation are
O(⇤) and O(�2/⇤). Noting that

1X

k=0
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(k
0

, k
0

), (79)

we summarize this result as
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(k
0
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0

) + V l+1

(k
0

, k
0

)). (80)

Thus we can approximate the T -matrix more accurately
by
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. (81)

A. Delta function potential

The simplest finite-range potential we can consider is
the delta function

V (r) =
V
0

r
�(r)�(✓), (82)

which has partial wave components V l

(k, k0) = V
0

�
l,0

,
from (46). Since this is independent of momenta, the T
matrix is as well, and there is no need for approximation
at this level. Instead, the T -matrix exactly satisfies the
equations

T 0
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V
0

/2

1� (I0 + J0

)

= T
+�, (83)

where we have made use of the fact that I l
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and J l
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� ⌘ J l for the delta potential. The integral
J0 and may be ignored since
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in agreement with (81).
The fact that the only non-zero component of the T -

matrix is l = 0 in this case is an artifact of the unusual
nature of thecontact potential. Next we will investigate
more typical examples where all partial wave components
become important at low energies.

• Discussion of dimensional transmutation without
a scale-invariant Hamiltonian. Perhaps refer to an
appendix explaining renormalization for a T matrix
in conventional 2D delta potential problem?

B. Circular barrier potential

Consider the finite circular barrier

V (r) =
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V
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(88)

The partial wave components
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(89)
are evaluated numerically. When k = k0 = k

0

, this
is most easily done by summing the first few terms of
(79). Inserting these components into (81) gives the
low energy T -matrix which is plotted in figure 2 for a
short barrier. Along with our approximation, we plot
the results for the first Born approximation T l

�� ⇡
1/2(V l

(k, k0) + V l+1

(k, k0)).
We see that for each l component, there is a thresh-

old energy below which the Born approximation fails to
capture the correct energy dependence. The reason is
most quickly seen from the asymptotic Green’s function
in position-space (13), which is singular at � = 0 (recall
that k

+

+ k� = k
>

� k
<

= 2�). Evidently, it is not
enough to require that the potential be perturbatively
small to use the Born approximation. Instead we require
V0R

2

�

< 1.
We will see below that this qualitative structure of the

T -matrix is reproduced in the delta-shell potential, for
which an exact solution is available.

V. DELTA-SHELL POTENTIAL

We now consider the potential

V (r) = V
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�(r �R). (90)

So that
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FIG. 2. Absolute value of the lower-helicity T -matrix as a
function of the dimensionless parameter � for l = 0, 1, 2, ob-
tained from (81) (solid), and from the first Born approx-
imation (dashed). The dimensionles parameters used are
mV0R

2 = 0.1, k0R = 1, ⇤ = 0.1. Note that in the first
Born approximation, T l

�� is a 2⇥ 2 matrix in the k7 states.
However, these four different components are visually indis-
tinguishable at these energies, so here we just show one of
them.

Again, we plot the corresponding value of the T -matrix
approximation (see figure 4). With this potential, we
are awarded an independent check on our approximation.
The S-matrix for the delta-shell potential was computed
directly from matching conditions of the wavefunction
in [2]. With the aid of (27) we may translate this into
the corresponding T -matrix (or vice versa using (28)) and
compare with our approximation.

VI. CONCLUSION

Appendix A: Rashba Green’s function in
position-space

Here we derive the retarded position-space Green’s
function. This derivation can be found in reference [10],
but we include it here for completeness and to standard-
ize the notation. We may write the Green’s function as
a 2⇥ 2 matrix in spin-space

G+

(r, r

0
;E) =

Z
d2k
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eik·(r�r
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The angular integral is trivial and for the diagonal part,
one finds
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dkJ
0

(k|r � r

0|)

⇥
✓

k

k2 + 2m�k � 2mE � i✏

+

k

k2 � 2m�k � 2mE � i✏

◆
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FIG. 3. Absolute value of the lower-helicity T -matrix (a) and
diagonal part of the S-matrix (b) as a function of the dimen-
sionless parameter � for l = 0, 1, 2, 3. Curves are obtained
from an exact calculation of the wavefunction (solid), and
from the our approximation (81) (dashed). The dimensionles
parameters used are mV0 = 1, k0R = 0.1, ⇤ = 0.1.

For any energy E, we designate the on-shell upper and
lower helicity wave vectors by

k± = ⌥m�+

p
(m�)2 + 2mE (A3)

= k
0

(� ⌥ 1). (A4)

These determine the poles of the Green’s function, which
are seen from (A2) by partial fraction decomposition.
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.

The first and last terms may be combined, as well as
the second and third to give
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These last integrals may be evaluated with a useful
identity:

Z 1

0

dtJ
⌫

(at)
t

t2 � z2
=

⇡i

2

H+

⌫

(az), (A6)
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in the small parameter
p
�2 � x < ⇤ << 1. The square

brackets above may be expanded in this parameter to
give [�

n,0

+ O(�2 � x)]. The fact that no terms of orderp
�2 � x appear in these brackets is due to the interfer-

ence between q < k
0

and q > k
0

states. It is these absent
terms that would have yielded the logarithmic depen-
dence ln �/⇤ were this conventional 2D scattering. With
this approximation, the integrals are readily evaluated as

Re(I l�) ⇡
m

2⇡

1X

k=0

2

⇤

(f
0k|l| + f

0k|l+1|),

(78)

where the terms neglected in this approximation are
O(⇤) and O(�2/⇤). Noting that

1X

k=0

f
0k|l| = V l

(k
0

, k
0

), (79)

we summarize this result as

Re(I l�) ⇡
m

⇡⇤
(V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)). (80)

Thus we can approximate the T -matrix more accurately
by

T l

�� ⇡
1

2

[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

1 +

m

2

(

i

�

+

2

⇡⇤

)[V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)]

. (81)

A. Delta function potential

The simplest finite-range potential we can consider is
the delta function

V (r) =
V
0

r
�(r)�(✓), (82)

which has partial wave components V l

(k, k0) = V
0

�
l,0

,
from (46). Since this is independent of momenta, the T
matrix is as well, and there is no need for approximation
at this level. Instead, the T -matrix exactly satisfies the
equations

T 0

�� =

V
0

/2

1� (I0 + J0

)

= T
+�, (83)

where we have made use of the fact that I l
+

= I l� ⌘ I l,
and J l

+

= J l

� ⌘ J l for the delta potential. The integral
J0 and may be ignored since

J0

= 2mV
0

Z
⇤

⇤

d✏

4⇡

(1 + ✏)

�2 � 4(✏+ 1)� ✏2
⇠ O(⇤). (84)

The other integral evaluates to

I0 = 2mV
0

Z
⇤

⇤

d✏

4⇡

(1 + ✏)

�2 � ✏+ i⌘
(85)
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�
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◆
, (86)

so that

T 0

�� =

V
0

/2

1 +

m

2

(

i

�

+

2

⇡⇤

)V
0

, (87)

in agreement with (81).
The fact that the only non-zero component of the T -

matrix is l = 0 in this case is an artifact of the unusual
nature of thecontact potential. Next we will investigate
more typical examples where all partial wave components
become important at low energies.

• Discussion of dimensional transmutation without
a scale-invariant Hamiltonian. Perhaps refer to an
appendix explaining renormalization for a T matrix
in conventional 2D delta potential problem?

B. Circular barrier potential

Consider the finite circular barrier

V (r) =

(
V
0

r < R

0 r > R.
(88)

The partial wave components

V l

(k, k0) = V
0

R

Z
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d✓
k

0�k

2⇡

eil✓k0�k

|k� k

0|J1(R|k� k

0|),

(89)
are evaluated numerically. When k = k0 = k

0

, this
is most easily done by summing the first few terms of
(79). Inserting these components into (81) gives the
low energy T -matrix which is plotted in figure 2 for a
short barrier. Along with our approximation, we plot
the results for the first Born approximation T l

�� ⇡
1/2(V l

(k, k0) + V l+1

(k, k0)).
We see that for each l component, there is a thresh-

old energy below which the Born approximation fails to
capture the correct energy dependence. The reason is
most quickly seen from the asymptotic Green’s function
in position-space (13), which is singular at � = 0 (recall
that k

+

+ k� = k
>

� k
<

= 2�). Evidently, it is not
enough to require that the potential be perturbatively
small to use the Born approximation. Instead we require
V0R

2

�

< 1.
We will see below that this qualitative structure of the

T -matrix is reproduced in the delta-shell potential, for
which an exact solution is available.

V. DELTA-SHELL POTENTIAL

We now consider the potential

V (r) = V
0

�(r �R). (90)

So that

V l

(k, k0) = V
0

R

Z
2⇡

0

d✓
k

0�k

2⇡
J
0

(|k� k

0|)eil✓k0�k . (91)
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FIG. 2. Absolute value of the lower-helicity T -matrix as a
function of the dimensionless parameter � for l = 0, 1, 2, ob-
tained from (81) (solid), and from the first Born approx-
imation (dashed). The dimensionles parameters used are
mV0R

2 = 0.1, k0R = 1, ⇤ = 0.1. Note that in the first
Born approximation, T l

�� is a 2⇥ 2 matrix in the k7 states.
However, these four different components are visually indis-
tinguishable at these energies, so here we just show one of
them.

Again, we plot the corresponding value of the T -matrix
approximation (see figure 4). With this potential, we
are awarded an independent check on our approximation.
The S-matrix for the delta-shell potential was computed
directly from matching conditions of the wavefunction
in [2]. With the aid of (27) we may translate this into
the corresponding T -matrix (or vice versa using (28)) and
compare with our approximation.

VI. CONCLUSION

Appendix A: Rashba Green’s function in
position-space

Here we derive the retarded position-space Green’s
function. This derivation can be found in reference [10],
but we include it here for completeness and to standard-
ize the notation. We may write the Green’s function as
a 2⇥ 2 matrix in spin-space
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0
;E) =
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The angular integral is trivial and for the diagonal part,
one finds
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FIG. 3. Absolute value of the lower-helicity T -matrix (a) and
diagonal part of the S-matrix (b) as a function of the dimen-
sionless parameter � for l = 0, 1, 2, 3. Curves are obtained
from an exact calculation of the wavefunction (solid), and
from the our approximation (81) (dashed). The dimensionles
parameters used are mV0 = 1, k0R = 0.1, ⇤ = 0.1.

For any energy E, we designate the on-shell upper and
lower helicity wave vectors by

k± = ⌥m�+

p
(m�)2 + 2mE (A3)

= k
0

(� ⌥ 1). (A4)

These determine the poles of the Green’s function, which
are seen from (A2) by partial fraction decomposition.
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The first and last terms may be combined, as well as
the second and third to give
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These last integrals may be evaluated with a useful
identity:

Z 1

0

dtJ
⌫

(at)
t

t2 � z2
=

⇡i

2

H+

⌫

(az), (A6)
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FIG. 2. Absolute value of the lower-helicity T -matrix as a
function of the dimensionless parameter � for l = 0, 1, 2, ob-
tained from (81) (solid), and from the first Born approx-
imation (dashed). The dimensionles parameters used are
mV0R

2 = 0.1, k0R = 1, ⇤ = 0.1. Note that in the first
Born approximation, T l

�� is a 2⇥ 2 matrix in the k7 states.
However, these four different components are visually indis-
tinguishable at these energies, so here we just show one of
them.

Again, we plot the corresponding value of the T -matrix
approximation (see figure 4). With this potential, we
are awarded an independent check on our approximation.
The S-matrix for the delta-shell potential was computed
directly from matching conditions of the wavefunction
in [2]. With the aid of (27) we may translate this into
the corresponding T -matrix (or vice versa using (28)) and
compare with our approximation.

VI. CONCLUSION

Appendix A: Rashba Green’s function in
position-space

Here we derive the retarded position-space Green’s
function. This derivation can be found in reference [10],
but we include it here for completeness and to standard-
ize the notation. We may write the Green’s function as
a 2⇥ 2 matrix in spin-space
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The angular integral is trivial and for the diagonal part,
one finds
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FIG. 3. Absolute value of the lower-helicity T -matrix (a) and
diagonal part of the S-matrix (b) as a function of the dimen-
sionless parameter � for l = 0, 1, 2, 3. Curves are obtained
from an exact calculation of the wavefunction (solid), and
from the our approximation (81) (dashed). The dimensionles
parameters used are mV0 = 1, k0R = 0.1, ⇤ = 0.1.

For any energy E, we designate the on-shell upper and
lower helicity wave vectors by

k± = ⌥m�+

p
(m�)2 + 2mE (A3)

= k
0

(� ⌥ 1). (A4)

These determine the poles of the Green’s function, which
are seen from (A2) by partial fraction decomposition.
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the second and third to give
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These last integrals may be evaluated with a useful
identity:

Z 1

0

dtJ
⌫

(at)
t

t2 � z2
=

⇡i

2

H+

⌫

(az), (A6)
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in the small parameter
p
�2 � x < ⇤ << 1. The square

brackets above may be expanded in this parameter to
give [�

n,0

+ O(�2 � x)]. The fact that no terms of orderp
�2 � x appear in these brackets is due to the interfer-

ence between q < k
0

and q > k
0

states. It is these absent
terms that would have yielded the logarithmic depen-
dence ln �/⇤ were this conventional 2D scattering. With
this approximation, the integrals are readily evaluated as

Re(I l�) ⇡
m

2⇡

1X

k=0

2

⇤

(f
0k|l| + f

0k|l+1|),

(78)

where the terms neglected in this approximation are
O(⇤) and O(�2/⇤). Noting that

1X

k=0

f
0k|l| = V l

(k
0

, k
0

), (79)

we summarize this result as

Re(I l�) ⇡
m

⇡⇤
(V l

(k
0

, k
0

) + V l+1

(k
0

, k
0

)). (80)

Thus we can approximate the T -matrix more accurately
by

T l
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1

2
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0

) + V l+1
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, k
0

)]

1 +
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(
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2

⇡⇤
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, k
0

) + V l+1

(k
0

, k
0

)]

. (81)

A. Delta function potential

The simplest finite-range potential we can consider is
the delta function

V (r) =
V
0

r
�(r)�(✓), (82)

which has partial wave components V l

(k, k0) = V
0

�
l,0

,
from (46). Since this is independent of momenta, the T
matrix is as well, and there is no need for approximation
at this level. Instead, the T -matrix exactly satisfies the
equations

T 0

�� =

V
0

/2

1� (I0 + J0

)

= T
+�, (83)

where we have made use of the fact that I l
+

= I l� ⌘ I l,
and J l

+

= J l

� ⌘ J l for the delta potential. The integral
J0 and may be ignored since

J0

= 2mV
0

Z
⇤

⇤

d✏

4⇡

(1 + ✏)

�2 � 4(✏+ 1)� ✏2
⇠ O(⇤). (84)

The other integral evaluates to

I0 = 2mV
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(85)
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so that

T 0

�� =

V
0

/2

1 +

m

2

(
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2

⇡⇤

)V
0

, (87)

in agreement with (81).
The fact that the only non-zero component of the T -

matrix is l = 0 in this case is an artifact of the unusual
nature of thecontact potential. Next we will investigate
more typical examples where all partial wave components
become important at low energies.

• Discussion of dimensional transmutation without
a scale-invariant Hamiltonian. Perhaps refer to an
appendix explaining renormalization for a T matrix
in conventional 2D delta potential problem?

B. Circular barrier potential

Consider the finite circular barrier

V (r) =

(
V
0

r < R

0 r > R.
(88)

The partial wave components

V l

(k, k0) = V
0
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d✓
k

0�k
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eil✓k0�k

|k� k

0|J1(R|k� k

0|),

(89)
are evaluated numerically. When k = k0 = k

0

, this
is most easily done by summing the first few terms of
(79). Inserting these components into (81) gives the
low energy T -matrix which is plotted in figure 2 for a
short barrier. Along with our approximation, we plot
the results for the first Born approximation T l

�� ⇡
1/2(V l

(k, k0) + V l+1

(k, k0)).
We see that for each l component, there is a thresh-

old energy below which the Born approximation fails to
capture the correct energy dependence. The reason is
most quickly seen from the asymptotic Green’s function
in position-space (13), which is singular at � = 0 (recall
that k

+

+ k� = k
>

� k
<

= 2�). Evidently, it is not
enough to require that the potential be perturbatively
small to use the Born approximation. Instead we require
V0R

2

�

< 1.
We will see below that this qualitative structure of the

T -matrix is reproduced in the delta-shell potential, for
which an exact solution is available.

V. DELTA-SHELL POTENTIAL

We now consider the potential

V (r) = V
0

�(r �R). (90)

So that

V l

(k, k0) = V
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The momentum-space T -matrix must again be indepen-
dent of k0 in this approximation, so that

T k

0
k ⇡ T (k)

= V +

✓Z 1

�1
dx

Z 1

�1

dq

2⇡

eiqxV (x)

E � q

2

2m

+ i⌘

◆
T (k)

= V +

✓
mip
2mE

Z 1

�1
dxV (x)ei

p
2mEx

◆
T (k)

(67)

If we only consider the lowest order terms in E, and make
use of the fact that the potential is short-ranged, we get
the analytic approximation for T

T ⇡ V

1� imp
2mE

R1
�1 dxV (x)ei

p
2mEx

(68)

=

i

m

p
2mE +O(E). (69)

Thus, provided we identify the one-dimensional (1D) �
parameter with

p
2mE, we get the same T matrix as

in the low-energy 2D Rashba case1. This connection
suggests that low-energy Rashba scattering has a fun-
damental 1D character, independent of the details of the
potential. Indeed, it was shown in [2] that at least for
some potentials, only forward and backward scattering
are allowed at very low energies. In other words, the
wavefunction behaves like that of a particle scattering in
a 1D system.

One might notice that (69) and (64) differ by a minus
sign. For the Rashba case, this sign ensures that the
cross section is positive in (40). More importantly, it
has interesting implications for the S-matrix. Looking
at (28) we see that this sign guarantees that the diagonal
part of the S-matrix vanishes as � approaches zero.

The form of the low-energy T -matrix has interesting
consequences for the cross-section. First note that the
total cross section becomes infinite at the threshold en-
ergy �E

0

. This result is typical of 2D scattering, though
the reasons for it are not. Using the optical theorem (40),
our T -matrix approximation gives a low energy cross sec-
tion of

� ⇡ 2

k
0

1X

l=�1

�⇤2
l

/�2

1 + �⇤2
l

/�2
. (70)

Qualitatively speaking, there is a threshold parameter
�⇤
l

for each partial wave l. As we lower the energy, and
thereby �, we pass through these points one by one. Each
time the condition � . �⇤

l

is satisfied an additional two
partial waves (one for l and one for �l) contribute to the

1
Unlike the 2D Rashba case, this 1D � parameter is not dimension-

less. This is simply because in two dimensions the momentum-

space T -matrix must have units of inverse energy, while in one

dimension, it is dimensionless.

scattering, and the cross section increases by 4/k
0

, tend-
ing to infinity as � ! 0. This is unlike the conventional
2D case in which the pre-factor 1/k blows up while the
partial wave sum remains finite. So we will generically
have a series of jumps and plateaus in the cross-section
as a function of �. However, because �⇤

l

decays as l in-
creases, these plateaus become smaller and smaller as we
approach the ground state energy.

V. EXAMPLE POTENTIALS

A. Delta function potential

The simplest finite-range potential we can consider is
the delta function
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which has partial wave components V l
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in agreement with (61). We emphasize that the lowest
order contributions in � are independent of the the cutoff
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❖ Optical theorem gives low-energy cross section:
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Summary
❖ The low energy limit of a Rashba system contains interesting physics not seen at 

energies above the Dirac point:

❖ Change in the topology of the Fermi surface (Lifschitz transition).

❖ Low energy scattering quantities have a 1D character:

❖ Differential cross sections become confined to a line (incident wave axis).

❖ T matrix has an energy dependence inherent to 1D systems.

❖ Low energy T matrix is universal - independent of potential features

❖ Low energy      s-wave!

❖ Conductivity displays quantized plateaus. 

6=



Thank you!
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This is accomplished by noting from (4) and (A4), the
mathematical relation

k± = ⌥k7, (20)

valid for any negative energy. (15) then reads
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The Lippman-Schwinger equation finally reads
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Comparing (25) to (18), we may simply read off the
relation between the T -matrix and scattering amplitude:
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The above result can be shown to be equivalent to the

usual definition of the S-matrix (see e.g. [4])
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with the appropriate change of basis. See appendix B for
details.

B. Cross section and optical theorem

To complete our scattering formalism we determine the
differential cross section. Beginning with Fermi’s golden
rule, the transition rate is connected to the T -matrix via
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Furthermore, the cross section in this channel is simply
the transition rate divided by the incident flux
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This last expression was denoted |�
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|2 in reference [2].
Integrating over angles and summing over scattering
channels, gives the total cross section for an incident k
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denotes the off-diagonal component with first
index µ, and we used the unitarity condition of the S-
matrix (|Sl

µ�µ

|2 = 1� |S
µµ

|2) in line (36). The final form
of this cross section makes it clear that the diagonal part
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IV. RASHBA T -MATRIX

With this scattering formalism at hand, we may com-
pute any scattering observable in a Rashba system with
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This last expression was denoted |�
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|2 in reference [2].
Integrating over angles and summing over scattering
channels, gives the total cross section for an incident k
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where Sl

µ�µ

denotes the off-diagonal component with first
index µ, and we used the unitarity condition of the S-
matrix (|Sl

µ�µ

|2 = 1� |S
µµ

|2) in line (36). The final form
of this cross section makes it clear that the diagonal part
of the T -matrix in (27) obeys an optical theorem, since
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IV. RASHBA T -MATRIX

With this scattering formalism at hand, we may com-
pute any scattering observable in a Rashba system with
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where a
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, b
l

, c
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, and d
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are arbitrary coefficients.

III. HARD-DISK SCATTERING

We now add to the free-particle Hamiltonian (1) a scat-
tering potential V . We first consider single-electron scat-
tering off an infinite circular barrier

V =

(
1, r  R,

0, r > R.
(9)

Because the potential vanishes identically for r > R,
eigenstates of the full Hamiltonian with energy E obey
the free-particle expansion (8) in that region. In that
region, the wave function consists of an incident plane
wave  in

? with definite wave vector k? ˆ

x, as well as out-
going scattered waves with each of the allowed wave vec-
tors. In a typical scattering problem, the outgoing states
consist of H+

(kr) radial functions, which combines with
the fact that the group velocity v

g

points in the same
direction as the wave vector k to ensure that the prob-
ability current carried by an outgoing state is directed
radially outwards. However, in the Rashba problem the
expectation value of the group velocity v

g

= rkH0(k)

in states of negative helicity is hv
g

i = (k � k0)ˆk/m. For
energies below the Dirac point, the k

<

states have group
velocity antiparallel to the wave vector, thus the outgo-
ing k

<

states should be accompanied by H�
(kr) radial

functions to carry a probability current directed radially
outwards. For an incident wave in the k
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state, the wave
function for r > R can be written as
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FIG. 2. Plane wave scattering off an infinite circular barrier.
There are two circular scattered states (blue and orange) of
different wavelengths corresponding to the k> and k< states,
respectively.
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are coefficients to be
determined by a solution of the scattering problem.
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partial waves:

 in
? (r, ✓) =

1p
2

✓
1

i

◆
eik?x

=

1X

l=�1

il

2

p
2

eil✓

✓
H+

l

(k?r)
�H+

l+1(k?r)ei✓

◆

+

✓
H�

l

(k?r)
�H�

l+1(k?r)ei✓

◆�
. (15)

The infinite potential barrier (9) forces the wave function
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E < 0, provided we know the T -matrix T
kµk⌫

�� . In a
conventional 2D system without spin-orbit coupling, the
T -matrix takes on a form at low energies that is domi-
nated by the s-wave term.

Tkk

0
⇡ T 0

(E) ⇠ 1/m

i� 1

⇡

ln(E/E
a

)

, (41)

where E
a

is a parameter that encodes the potential V ,
and is related to the scattering length (see e.g. [5], [6]).
Before doing any calculation, we can already see that
Rashba T -matrix must have a different energy depen-
dence, simply by looking at the Lippmann-Schwinger
equation (25). Since the coefficient of the scattered wave-
function goes as 1/� for low energies, the T -matrix must
at least be linear in � in order to keep the probability
finite. We now make this explicit by deriving the low-
energy Rashba T -matrix for any circularly symmetric,
spin-independent potential of finite range.

First, we will need to impose a momentum cutoff

k
0

� ˜

⇤ < k < k
0

+

˜

⇤ (42)

to avoid UV and infrared divergences. This amounts to
keeping only the low-energy modes in our model, similar
to the momentum shell RG approach in the many-body
problem [7][8]. The appropriate dimensionless quantity
corresponding to this cutoff is ⇤ ⌘ ˜

⇤/k
0

, so that we will
always enforce the following hierarchy of scales:

� ⌧ ⇤ ⌧ 1. (43)

In the helicity basis denoted by i, j, any central spin-
independent potential may be written as

V
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(k, k

0
) =

Z
d2xei(k�k

0
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where ✓

k

0�k

⌘ ✓0
k

� ✓
k

, and in the second line, we intro-
duced the partial wave component
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Z 1
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drrV (r)J
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(46)
where J

0

(|k� k

0|r) is the zeroth order Bessel function of
the first kind.

Now the T -matrix is defined by the Born series

T = V + V G+T. (47)

We write this in the momentum, helicity basis |k, ii in
which the Green’s function is diagonal

T
k⌫kµ

ji

= V
ji

(k

⌫

, k

µ

)

+

X

n=+,�

Z
d2q

(2⇡)2
V
jn

(k

⌫

, q)G+

nn

(q)T
qkµ

ni

.(48)

FIG. 1. (a) k-space contours and (b) low-energy spectrum
for a single Rashba electron. The shaded region shows the
allowed virtual transitions with |k � k0| < ⇤̃ to be incorpo-
rated in the T -matrix. The orange lines show the continuum
of negative helicity eigenstates. The blue line in (b) is the
positive helicity branch.

We want to expand the potential about the ground
state wavevector k

0

. More precisely, let us examine the
V l components given by (46). For the on-shell terms
V
ji

(k

µ

, k

⌫

) in (48), the argument of this Bessel function
is
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� k

⌫

|r = r
q

k2
µ

+ k2
⌫

� 2k
µ

k
⌫

cos ✓
k

0�k
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p
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k

0�k

+O(�). (50)

The off-shell components in the integral of (48) may also
be expanded about � = 0. The argument of the Bessel
function becomes

|k
⌫

� q|r =

p
2k

0

r
p
(1 + ✏)(1� cos ✓

k

0�k

)+O(�), (51)
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FIG. 3. (a) Diagonal and (b) off-diagonal transition prob-
abilities from the S-matrix elements for partial waves l =
0, 1, 2, 3, 4, as a function of � =

p
1� |E|/E0. In both plots

k0R = 0.1.

Using the asymptotic form of the incident and scattered
wave functions, the fluxes are given by
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FIG. 4. Polar plots of differential cross section for scattering
between: (a) helicity bands at positive energies (E = 2E0,
E = 4E0, E = 6E0), (b) k? states at negative energies (E =
�0.01E0, E = �0.5E0, E = �0.99E0), and (c) k? states
near the band bottom (E = �0.999E0, E = �0.9999E0, E =
�0.99999E0). In each plot, k0R is set to 0.1. The radius of
each curve is the magnitude of k0|�ii|2. In the bottom figure,
there is no visible distinction between |�><|2 and |�<<|2, as
with |�>>|2 and |�<>|2, so only one of each is plotted.
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FIG. 5. Total cross section for various values of the dimension-
less scatterer radius k0R: (a) total cross section for incoming
k> state as a function of energy, (b) total cross section for in-
coming k< state as a function of energy, (c) total cross section
for incoming k> state as a function of � on a log-linear scale.
In each of (a) and (b), the cross section is also calculated in
the E > 0 regime. For �< (�>), this shows scattering from an
incident positive-helicity (negative-helicity) state. The verti-
cal dashed line in (a) and (b) at E/E0 = �1 is a guide to
the eye, showing the divergent behavior of all cross sections
at the band bottom. The horizontal dashed lines in (c) show
the plateaus at k0�> = 4n, n = 0, 1, 2, . . .

IV. DELTA-SHELL SCATTERING

In the low-energy limit E ! �E0, the S-matrix (27)
and, consequently, the differential cross section (38) and
plateau behavior of the total cross section (41) were found
to be completely independent of the range R of the scat-
tering potential. While this result suggests the form (27)
of the S-matrix is a universal feature of Rashba scatter-
ing in the low-energy limit, at least for spin-independent
and rotationally invariant finite-range potentials V (r),
the possibility remains that Eq. (27) is a special feature

of the hard-disk potential (9). To further support our
conjecture of the universality of the low-energy S-matrix
(27), we consider the E < 0 scattering problem for an-
other scattering potential, the delta-shell potential:

V (r) = V0�(r � R). (42)

Compared with the hard-disk potential (9), this potential
has two tunable parameters, V0 and R. In the region
r > R, the wave function has the same form as Eq. (8).
For r < R, the Neumann functions N

l

(k?r) must be
eliminated for the solution to be regular at r = 0. Thus,
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. (43)

Consider an incident k
>

state. Then a
l

= 0, d
l

=

i

l

2
p
2
,

and there are four unknown coefficients. Continuity of
the wave function at r = R gives two equations,

 

r>R

(R, ✓) =  
r<R

(R, ✓), (44)

and integrating the Schrödinger equation along the radial
direction from R � ✏ to R + ✏ gives two more

@
r

 

r>R

(R, ✓) � @
r

 

r<R

(R, ✓) = 2mV0 (R, ✓). (45)

All four coefficients can thus be solved for, but their
closed forms are too long to present here. Instead, we
focus on the low-energy limit. At the band bottom, we
have k

<

= k
>

= k0 and the matching conditions (44)-
(45) may be written as the matrix equation

M

0

BB@

a0
l

b0
l

b
l

+

i

l

2
p
2

c
l

1

CCA =

0

B@

0

0

0

0

1

CA , (46)

where M is a 4⇥ 4 matrix containing Bessel and Hankel
functions evaluated at k0R. One can readily verify that
detM 6= 0 for any nonzero value of V0. Thus only the
trivial solution a0

l

= b0
l

= c
l

= 0, b
l

= � i

l

2
p
2

satisfies the
matching conditions, which is precisely the result from
hard-disk scattering.

The S-matrix (27) appears to be a universal feature of
low-energy Rashba scattering in that it applies to both
hard-disk and delta-shell potentials of any radius R and
magnitude V0. We conjecture that this extends to any
circularly symmetric, spin-independent potential of finite
radius.

V. CONCLUSION

In summary, we have studied the scattering of electrons
with Rashba spin-orbit coupling off spin-independent,
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FIG. 4. Real (a) and Imaginary (b) parts of the lower-helicity
T -matrix as a function of the dimensionless parameter � for
l = 0, 1, 2, 3. Curves are obtained from an exact calculation of
the wavefunction (solid), and from the our approximation (61)
(dashed). The dimensionless parameters used are mV0 = 1,
k0R = 0.1, ⇤ = 0.1.

a 2⇥ 2 matrix in spin-space

G+

(r, r

0
;E) =

Z
d2k

4⇡2

eik·(r�r

0)

(E � k

2

2m

)

2 � (�k)2 + i✏

⇥
 

E � k

2

2m

i�ke�i✓k

�i�kei✓k E � k

2

2m

!
. (A1)

The angular integral is trivial and for the diagonal part,
one finds

G+

��

(r, r

0
;E) = �m

2⇡

Z 1

0

dkJ
0

(k|r � r

0|)

⇥
✓

k

k2 + 2m�k � 2mE � i✏

+

k

k2 � 2m�k � 2mE � i✏

◆
. (A2)

For any energy E, we designate the on-shell upper and
lower helicity wave vectors by

k± = ⌥m�+

p
(m�)2 + 2mE (A3)

= k
0

(� ⌥ 1). (A4)

These determine the poles of the Green’s function, which

are seen from (A2) by partial fraction decomposition.

G+

��

(r, r

0
;E) = �m

2⇡

Z 1

0

dk
J
0

(k|r � r

0|)
k� + k

+

✓
k
+

k � k
+

� i✏

+

k�
k + k� + i✏

+

k�
k � k� � i✏

+

k
+

k + k
+

+ i✏

◆
.

The first and last terms may be combined, as well as
the second and third to give

G+

��

(r, r

0
;E) = � m

⇡(k� + k
+

)

✓
k
+

Z 1

0

dk
kJ

0

(k|r � r

0|)
k2 � (k

+

+ i✏)2

+k�

Z 1

0

dk
kJ

0

(k|r � r

0|)
k2 � (k� + i✏)2

◆
. (A5)

These last integrals may be evaluated with a useful
identity:

Z 1

0

dtJ
⌫

(at)
t

t2 � z2
=

⇡i

2

H+

⌫

(az), (A6)

valid for a > 0, Im(z) > 0. Thus,

G+

��

(r, r

0
;E) = � im

2(k� + k
+

)

✓
k
+

H+

0

(k
+

|r � r

0|)

+k�H
+

0

(k�|r � r

0|)
◆
. (A7)

Next we evaluate the off-diagonal components. The
angular integral again gives a Bessel function

G+

��

0(r, r
0
;E) = ⌥ 1

2⇡

Z 1

0

dk
�k2J

1

(k|r � r

0|)e⌥i✓r�r0

(E � k

2

2m

)

2 � (�k)2 + i✏
.

(A8)
Here the top sign is for � =",�0

=#, and the bottom is
for � =#,�0

=". Proceeding with the radial integral as
before,

G+

��

0(r, r
0
;E) = ±m

2⇡

Z 1

0

dkk
J
1

(k|r � r

0|)
k� + k

+

⇥
✓

1

k � k
+

� i✏
� 1
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� 1

k � k� � i✏
+

1
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+
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◆

⇥e⌥i✓r�r0 . (A9)
Both Bessel and Hankel functions satisfy the differen-

tial relation
@

@a
f
0

(ax) = �xf
1

(ax), (A10)

so upon combining the first and last terms as well as the
second and third terms in (A9), we may write

G+

��

0(r, r
0
;E) = ⌥ m

⇡(k
+

+ k�)
(A11)
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