Universality of low-energy Rashba scattering

Joel Hutchinson
Joseph Maciejko
Spin degeneracy is a consequence of time-reversal + inversion symmetry

\[E(k \uparrow) = E(-k \downarrow) \quad \text{Time-reversal} \]
\[E(k \uparrow) = E(-k \uparrow) \quad \text{Inversion} \]

\[\Rightarrow E(k \uparrow) = E(k \downarrow) \]

Rashba spin-orbit coupling
Rashba spin-orbit coupling

- Spin degeneracy is a consequence of time-reversal + inversion symmetry

\[E(k \uparrow) = E(-k \downarrow) \quad \text{Time-reversal} \]

\[E(k \uparrow) = E(-k \uparrow) \quad \text{Inversion} \]

\[\Rightarrow E(k \uparrow) \neq E(k \downarrow) \]

- Inversion asymmetry causes “spin-split” dispersion

E.g. surfaces, interfaces, quantum well with confining potential
Rashba spin-orbit coupling

- Spin degeneracy is a consequence of time-reversal + inversion symmetry

\[
E(k \uparrow) = E(-k \downarrow) \quad \text{Time-reversal}
\]

\[
E(k \uparrow) = E(-k \uparrow) \quad \text{Inversion}
\]

\[
\Rightarrow E(k \uparrow) \neq E(k \downarrow)
\]

- Inversion asymmetry causes “spin-split” dispersion

E.g. surfaces, interfaces, quantum well with confining potential
Spin and momentum are locked. Lots of potential applications!

$E_0 = -\frac{1}{2}m\lambda^2$

Dirac point

Spin and momentum are locked. Lots of potential applications!
Low-energy Rashba

- **2D Hamiltonian:** \(H(k) = \frac{k^2}{2m} + \lambda \hat{z} \cdot (\sigma \times k) \)

There are two different scattering states at each angle.

\(k_{\geq} \equiv k_0(1 \pm \delta) \quad \delta \equiv \sqrt{1 - |E|/E_0} \quad E_0 = \frac{1}{2}m\lambda^2 \)
Low-energy Rashba
Basic question: Is there anything fundamentally different about Rashba scattering in this regime, independent of interactions and many-body physics?
Basic question: Is there anything fundamentally different about Rashba scattering in this regime, independent of interactions and many-body physics?
\[V = \begin{cases} \infty & r < R \\ 0 & r > R \end{cases} \]

- Wavefunction computed analytically from matching conditions.

\[\Psi(r, \theta) = \sum_{l=-\infty}^{\infty} e^{il\theta} \left[a_l \left(\frac{H_l^+(k<r)}{-H_{l+1}^+(k<r)e^{i\theta}} \right) + b_l \left(\frac{H_l^-(k<r)}{-H_{l+1}^-(k<r)e^{i\theta}} \right) + c_l \left(\frac{H_l^+(k>r)}{-H_{l+1}^+(k>r)e^{i\theta}} \right) + d_l \left(\frac{H_l^-(k>r)}{-H_{l+1}^-(k>r)e^{i\theta}} \right) \right] \]

- Cross-sections and S-matrix extracted.
Differential cross-section in conventional 2D system (no Rashba):

Differential cross-section in Rashba system:

\[kR = 0.01 \]

\[kR = 0.1 \]

\[kR = 0.25 \]

\[kR = 0.5 \]

\[kR = 0.75 \]

\[kR = 1.0 \]
Example: Hard Disk

- Differential cross-section in conventional 2D system (no Rashba):

- Differential cross-section in Rashba system:

- In the low energy limit, scattering looks 1D!

\[
\left(\frac{d\sigma}{d\theta} \right) \bigg|_{E=-E_0} = \frac{2\pi}{k_0} \left[\delta^2(\theta) + \delta^2(\theta - \pi) \right]
\]

Example: Hard Disk

\[
V = \begin{cases}
\infty & r < R \\
0 & r > R
\end{cases}
\]

- S-matrix decomposed in partial waves.

Example: Hard Disk

\[V = \begin{cases} \infty & r < R \\ 0 & r > R \end{cases} \]

\[S^l = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \]

- S-matrix decomposed in partial waves.
- Low energy limit:
- Independent of \(l \)
- Off diagonal
- Universal?
Scattering Formalism

- Relate T and S matrices through Lippmann-Schwinger equation:

\[
\psi_{k\sigma}(\mathbf{r}; E) = \psi^\text{in}_{k\sigma}(\mathbf{r}; E) + \sum_{\sigma',\sigma''} \int \frac{d^2 \mathbf{r}'}{(2\pi)^2} G^+_{\sigma\sigma'}(\mathbf{r}, \mathbf{r}'; E) T^k_{\sigma'\sigma''} e^{i \mathbf{k} \cdot \mathbf{r}'} \eta^-_{\sigma''}(\theta_k)
\]

- For negative energies:

\[
S^l_{\mu\nu} = \mathbb{I}_{\mu\nu} - \frac{im}{k_0 \delta} \sqrt{k_\mu k_\nu} T^l(k_\nu, k_\mu)
\]

Partial wave expansion

Lower helicity S matrix

Lower helicity T-matrix

Indices
Scattering Formalism

- Cross-sections from Fermi’s golden rule:
 \[
 \frac{d\sigma}{d\theta} \bigg|_{\mu\nu} = \frac{w_{\mu\rightarrow\nu}}{|\mathbf{j}_\mu|}
 \]
 \[
 \sigma_\mu = \frac{2}{k_\mu} \sum_{l=-\infty}^{\infty} (1 - \text{Re}(S^{l}_{\mu\mu}))
 \]

- Optical theorem:
 \[
 \text{Im}(T_\mu^{-k_\mu}k_\mu (\theta = 0)) = -\frac{k_0\delta}{2m} \sigma_\mu
 \]
 Is there a generic form for the T-matrix?
Generic Rashba T-matrix

Claim: The low-energy T-matrix takes a universal form for any circular-symmetric, finite range, spin-independent potential.

\[\delta \ll \Lambda \ll 1 \]

Allowed virtual transitions within cutoff
Generic Rashba T-matrix

- **Claim:** The low-energy T-matrix takes a universal form for any circular-symmetric, finite range, spin-independent potential.

Born series:

\[
T_{ji}^{k_{\nu}, k_{\mu}} = V_{ji}(k_{\nu}, k_{\mu}) + \sum_{n=\pm} \int \frac{d^2q}{(2\pi)^2} V_{jn}(k_{\nu}, q) G_{nn}^+(q) T_{ni}^q k_{\mu}
\]

"On-shell"

"Off-shell"
Generic Rashba T-matrix

\[V_{ji}(k_\nu, k_\mu) \approx V_{ji}(k'_0 \hat{k}_\nu, k'_0 \hat{k}_\mu) + O(\delta) \]

\[T_{--}^l \approx \frac{1}{m} \frac{\delta^*_l}{1 + i\delta^*_l/\delta} = -\frac{i\delta}{m} + O(\delta^2) \]

With \[\delta^*_l \equiv \frac{m}{2} (V^l(k_0, k_0) + V^{l+1}(k_0, k_0)) \]

\[V^l(k, k') = \int_0^{2\pi} \frac{d\theta}{2\pi} \int_0^\infty dr r V(r) J_0(|k - k'|r) e^{-i\ell \theta} \]
Remarks:

1) To lowest order, T-matrix is independent of potential and partial wave!

\[T_{-\ell} = -\frac{i\delta}{m} + O(\delta^2) \]

2) We obtain previous S-matrix limit.

\[S^l = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \]

3) The energy dependence is fundamentally different than in conventional 2D scattering.

\[T^{kk'} \approx T^0(E) \approx \frac{1/m}{i - \frac{1}{\pi} \ln(E/E_a)} \]

4) The energy dependence is that of a 1D T-matrix!

\[T_{1D} \approx \frac{i}{m} \sqrt{2mE} \]
Example: Delta-shell

\[V(r) = V_0 \delta(r - R) \]
Example: Delta-shell

\[V(r) = V_0 \delta(r - R) \]
$$V(r) = V_0 \delta(r - R)$$
Example: Circular Barrier

\[V(r) = \begin{cases} V_0 & r < R \\ 0 & r > R \end{cases} \]

1st Born approximation
Low-energy approximation

1st Born approximation
Low-energy approximation

\[\delta \]

\[m|T^l| \]
Conductivity

- Optical theorem gives low-energy cross section:
 \[
 \sigma \approx \frac{2}{k_0} \sum_{l=-\infty}^{\infty} \frac{\delta_l^* \delta}{1 + \delta_l^* \delta} \delta_l^2 / \delta^2
 \]

- Semi-classical Boltzmann:
 \[
 0 = \partial_t n_k + \hat{k} \cdot \nabla_k n_k + v \cdot \nabla_r n_k - \left(\frac{\partial n_k}{\partial t} \right)_{\text{collisions}}
 \]
Conductivity

- Optical theorem gives low-energy cross section:
 \[\sigma \approx \frac{2}{k_0} \sum_{l=-\infty}^{\infty} \frac{\delta_l^*}{1 + \frac{\delta_l^*}{\delta_l}} \]

- Semi-classical Boltzmann:
 \[0 = \partial_t n_k + \dot{k} \cdot \nabla_k n_k + v \cdot \nabla_r n_k - \left(\frac{\partial n_k}{\partial t} \right)_{\text{collisions}} \]

- Current density:
 \[j = -e \sum_{\nu} \int d\phi \int dE \rho_{\nu}(E)n_{k_{\nu}}(E)v_{\nu}(E, \phi) \]

- Conductivity:
 \[\sigma_e = \frac{e^2 k_0}{2\pi n_i \sigma} \]
Conductivity:

\[\sigma_e = \frac{e^2 k_0}{2\pi n_i \sigma} \]
The low energy limit of a Rashba system contains interesting physics not seen at energies above the Dirac point:

- Change in the topology of the Fermi surface (Lifschitz transition).
- Low energy scattering quantities have a 1D character:
 - Differential cross sections become confined to a line (incident wave axis).
 - T matrix has an energy dependence inherent to 1D systems.
- Low energy T matrix is universal - independent of potential features
- Low energy ≠ s-wave!
- Conductivity displays quantized plateaus.
Thank you!
\[
\psi_\mu (\mathbf{r}; E) \approx \psi^\text{in}_\mu (\mathbf{r}; E) - \frac{m}{(k^>_2 - k^<_2)} \left(\sqrt{\frac{2i}{\pi r}} (\sqrt{k^>_2} e^{ik^>_2 r} \eta^- (\theta_r) \eta^- (\theta_r) + T^{k^>_2} \eta^- (0))
\right.
+ i \sqrt{k^<_2} e^{-ik^<_2 r} \eta^+ (\theta_r) \eta^+ (\theta_r) + T^{-k^<_2} \eta^- (0))
\]

\[
\Psi (r, \theta) = \sum_{l=-\infty}^{\infty} e^{i l \theta} \left[a_l \left(\begin{array}{c} H^+_l (k^<_r) \\
-H^+_l (k^<_r) e^{i \theta} \end{array} \right) + b_l \left(\begin{array}{c} H^-_l (k^<_r) \\
-H^-_l (k^<_r) e^{i \theta} \end{array} \right) + c_l \left(\begin{array}{c} H^+_l (k^>_r) \\
-H^+_l (k^>_r) e^{i \theta} \end{array} \right) + d_l \left(\begin{array}{c} H^-_l (k^>_r) \\
-H^-_l (k^>_r) e^{i \theta} \end{array} \right) \right]
\]

\[
|k^\mu - k^\nu| r = r \sqrt{k^2_\mu + k^2_\nu - 2k^\mu k^\nu \cos \theta_{k^\nu - k}}
\]

\[
= \sqrt{2k_0 r} \sqrt{1 - \cos \theta_{k^\nu - k}} + O(\delta)
\]
Consider an incident helicity band at positive energies (negative-helicity state). The differential cross section for scattering has a universal feature of Rashba scattering in the low-energy limit, at least for spin-independent potentials matching conditions, which is precisely the result from the Neumann function (37) and (36).

In summary, we have studied the scattering of electrons near the band bottom (between: (a) helicity bands at positive energies (37), (b) differential cross section (38)), and (c) (39).

We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40).

The wave function has two tunable parameters, which is precisely the result from the Neumann function (37) and (36).

For an incident positive-helicity (negative-helicity) state as a function of energy, (c) total cross section (41), this shows scattering from an arbitrary (42).

The Neumann function (37) has two tunable parameters, which is precisely the result from the Neumann function (36).

We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40).

The wave function has two tunable parameters, which is precisely the result from the Neumann function (37) and (36).

We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (45), we found the Neumann function (46) and integrating the Schrödinger equation along the radial direction from (47) gives two more equations, (48).

The wave function has two tunable parameters, which is precisely the result from the Neumann function (37) and (36). In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40).

The wave function has two tunable parameters, which is precisely the result from the Neumann function (37) and (36). In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40).

The wave function has two tunable parameters, which is precisely the result from the Neumann function (37) and (36). In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40).

The wave function has two tunable parameters, which is precisely the result from the Neumann function (37) and (36). In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40).

The wave function has two tunable parameters, which is precisely the result from the Neumann function (37) and (36). In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40).

The wave function has two tunable parameters, which is precisely the result from the Neumann function (37) and (36). In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40).

The wave function has two tunable parameters, which is precisely the result from the Neumann function (37) and (36). In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, (40). The wave function at (41) gives two more equations, (42). Here is a guide to (43) and (44). We conjecture that this extends to any hard-disk and delta-shell potentials of any radius. In the region (37), we found the Neumann function (38) and integrating the Schrödinger equation along the radial direction from (39) gives two more equations, $(40).
These determine the poles of the Green's function, which lower helicity wave vectors by a (dashed). The dimensionless parameters used are $G_{\mathbf{r}} \cdot G_{\mathbf{r}} = 0$, $\Gamma_{\mathbf{r}} = \mathbf{r}$, and $\omega_{\mathbf{r}} = \mathbf{r}$. Curves are obtained from an exact calculation of r, $r \cdot \mathbf{r}$, and \mathbf{r}.

\[G_{\mathbf{r}} \cdot G_{\mathbf{r}} = 0, \quad \Gamma_{\mathbf{r}} = \mathbf{r}, \quad \omega_{\mathbf{r}} = \mathbf{r}. \]

\[\mathbf{r} \cdot \mathbf{r} = 0, \quad \mathbf{r} \cdot \mathbf{r} = \mathbf{r}. \]

So upon combining the first and last terms as well as the identity:

\[G_{\mathbf{r}} \cdot G_{\mathbf{r}} = 0, \quad \Gamma_{\mathbf{r}} = \mathbf{r}, \quad \omega_{\mathbf{r}} = \mathbf{r}. \]

\[(A4) (A1) \]

\[\phi = \frac{1}{2} \left(\mathbf{r} \cdot \mathbf{r} + \mathbf{r} \cdot \mathbf{r} \right). \]

\[(b) \]

\[k \cdot k + 2 \]

\[\mathbf{r} \cdot \mathbf{r} = 0, \quad \mathbf{r} \cdot \mathbf{r} = \mathbf{r}. \]

\[k \cdot k + 2 \]

\[\mathbf{r} \cdot \mathbf{r} = 0, \quad \mathbf{r} \cdot \mathbf{r} = \mathbf{r}. \]

\[(A4) (A1) \]

\[\phi = \frac{1}{2} \left(\mathbf{r} \cdot \mathbf{r} + \mathbf{r} \cdot \mathbf{r} \right). \]