

Probing Ultrafast Optical Demagnetization with an HHG Source

Katherine Légaré

may 30, 2017

Studying Ultrafast Optical Demagnetization Motivation

64 bytes

8 796 093 022 208 bytes (8 TB)

Ultrafast Optical Demagnetization Discovery

Article by Beaurepaire et al. in Physical Review Letters, 1996.

VOLUME 76, NUMBER 22

PHYSICAL REVIEW LETTERS

27 May 1996

Ultrafast Spin Dynamics in Ferromagnetic Nickel

E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot

Institut de Physique et Chimie des Matériaux de Strasbourg, Unité Mixte 380046 CNRS-ULP-EHICS, 23, rue du Loess, 67037 Strasbourg Cedex, France (Received 17 October 1995)

The relaxation processes of electrons and spins systems following the absorption of femtosecond optical pulses in ferromagnetic nickel have been studied using optical and magneto-optical pump-probe techniques. The magnetization of the film drops rapidly during the first picosecond, but different electron and spin dynamics are observed for delays in the range 0-5 ps. The experimental results are adequately described by a model including three interacting reservoirs (electron, spin, and lattice). [S0031-9007(96)00167-6]

Ultrafast Optical Demagnetization

Three temperature model

Magnetization Amplitude Probing Technique MOKE (Magneto-Optic Kerr Effect)

- Technique used by *Beaurepaire et al.*
- Reflectivity measurement
- Near infrared pump and probe

Magnetization Amplitude Probing Technique

RXMS (Resonant X-ray Magnetic Scattering)

$$f^n = (\boldsymbol{e}_s^* \cdot \boldsymbol{e}_i) f_c^n + i(\boldsymbol{e}_s^* \times \boldsymbol{e}_i) \cdot \boldsymbol{M}^n f_{m1}^n + (\boldsymbol{e}_s^* \cdot \boldsymbol{M}^n) (\boldsymbol{e}_i \cdot \boldsymbol{M}^n) f_{m2}^n$$

 $I \propto T M^2$

Magnetization Amplitude Probing Technique

RXMS (Resonant X-ray Magnetic Scattering)

- XUV probe spatial resolution
- No need for an external magnetic field
- Holds information on the magnetic structure of the sample

- Low efficiency (10⁻⁶)
- Requires a specific magnetic structure
- Magnetization must be outof-plane

How to produce short XUV pulses?

Experimental Details

High Harmonics Generation

Three-step model, P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

Experimental Details High Harmonics Generation

Experimental Details Setup

Experimental Details Sample

Si₃N₄(30nm) / Pt(2nm) / [Co(0.6nm) Pt(0.8nm)]₂₀ / Al(3nm)

Results

Results Wavelength scaling

Conclusion and Prospects

- Ultrafast optical demagnetization measurements by RXSM in ALLS laboratory
- New parameters
 - Wavelength
 - Pulse duration
- Next step
 - Spatial resolution

Acknowledgments

Thanks to Vincent Cardin, Dr. Tadas Balciunas, Antoine Laramée and to my supervisor, Pr. François Légaré.

Coming up

Presentation at the *Frontiers in Optics* 2017 conference (In revision)

